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Abstract 
China’s coal-fired central heating systems generate large amounts of hazardous emissions and 
significantly deteriorate air quality. In a regression discontinuity design based on the dates of 
winter heating, we estimate the acute health impacts of air pollution. We find that a 10-point 

increase in the weekly Air Quality Index will cause a 4% increase in mortality. Poor and vulnerable 
groups are particularly sensitive to this sudden air quality deterioration, suggesting that the health 
impacts of air pollution can be mitigated by better socio-economic conditions. Exploratory cost-
benefit analysis suggests that replacing coal with natural gas for heating will improve social 
welfare.  
 
Keywords: Winter Heating Policy, Air Pollution, Coal to Gas, Regression Discontinuity 
JEL: I18, Q48, Q53 
 

                                                 
ψ Department of Economics, Ball State University, Whitinger Business Building, Room 201 
2000 W. University Avenue, Muncie, IN 47306 (email: mfan@bsu.edu) 
ϕ Division of Social Science, Division of Environment and Sustainability, and Department of 
Economics, The Hong Kong University of Science and Technology, HK, China (email: 
gjhe@ust.hk) 

mailto:mfan@bsu.edu
mailto:gjhe@ust.hk


1 
 

1. Introduction 

Over 70 percent of China’s energy consumption comes from coal and emissions from coal 

combustion is the major anthropogenic contributor to air pollution in China (Chan and Yao, 2008). 

During the winter-heating seasons, large centralized coal-fired boilers provide low or zero-priced 

indoor heating to residential and commercial buildings in northern China. These boilers cause a 

significant deterioration in air quality when they are fired up (Xiao et al., 2015). The health impacts 

of such periodic, sudden and widespread environmental degradation have yet to be ascertained.   

 In this study, we estimate the causal impacts of air pollution on mortality by exploiting a 

regression discontinuity (RD) design based on the switching-on dates of the winter heating systems 

in northern Chinese cities. The identification strategy builds on the fact that turning on of the winter 

heating systems requires burning large amounts of coal and generates substantial emissions; this 

leads to an immediate deterioration in air quality and further diminishes health.  

 Using comprehensive weekly data on air quality, mortality, and weather conditions for 139 

urban districts and rural counties in Northern China from 2014 to 2015, we find that turning-on of 

the winter heating systems increases the weekly air quality index (AQI) by 36 points and causes a 

14% increase in all-cause mortality rate.1 We estimate that a 10-point increase in weekly air quality 

index (AQI) leads to a 3.8 percent increase in weekly mortality. Heterogeneity analyses show that 

air pollution has a greater impact on males than females and affects the elderly more than the 

young. More importantly, the short-term impacts of air pollution on mortality are almost entirely 

attributable to extra deaths in rural and low-income areas. These results suggest that improving 

socio-economic conditions could significantly mitigate the health impacts of air pollution.  

 Our work contributes to the existing literature in several important ways. First, due to the 

expansion of the coverage of China’s Disease Surveillance Point System, we are able to extend 

the health effect analysis of air pollution to rural areas in China and highlight the long-overlooked 

disparity in air pollution exposure between urban and rural areas.2 Residents in low-income and 

rural areas can be particularly vulnerable to air pollution shocks because they are less aware of the 

                                                 
1 Accidental deaths are excluded from our analysis throughout the paper.  
2 Facing data limitations in developing countries, previous studies have focused almost exclusively 
on large urban cities, while the majority of people living in the rural areas have been ignored. One 
exception is that Zhou et al. (2015) use data from five cities and two rural counties and find that 
smog episodes and fine particulates have greater impacts  on rural residents compared with urban 
residents.  
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harmful effects of air pollution and are less likely to adopt avoidance behaviors against air 

pollution. They also have less access to medical treatments when they get sick. Existing literature 

largely neglects these economically disadvantaged groups because air pollution information was 

not available in rural areas. Our finding that air pollution mainly impacts rural and poor people 

suggests that existing evidence may significantly under-estimate the overall costs of air pollution.  

The second contribution of our research is that it adds to a growing strand of economic 

research investigating the impact of air pollution in the developing countries (Chen et al., 2013; 

Ebenstein et al., 2017; Greenstone and Hanna, 2014; He et al., 2016). Our findings add new 

evidence to this literature and show that temporal changes in air quality can cause an immediate 

spike in death rates among vulnerable groups in China. Our estimates are relevant to the 4.5 billion 

people in developing countries who are currently exposed to high levels of air pollution, for 

example, the mean daily PM2.5 concentrations is 85 𝜇𝜇𝜇𝜇/𝑚𝑚3 in our sample.  

 A third contribution of this study is that we show the bias in the estimates in public health 

and epidemiology studies that use associational approaches. The estimates from these 

observational studies are widely used by governments and international organizations and have 

generated profound policy implications. After comparing our estimates with these associational 

estimates, we find that the impact of air pollution estimated from our quasi-experimental design is 

several times greater than the impacts estimated in associational studies. This finding echoes the 

argument made in a Science article: conventional approaches relying on “adjusting” for 

confounding factors often provide unreliable estimates of air pollution effects (Dominici et al., 

2014).  

 Fourth, based on our estimates, we conduct an exploratory benefit-cost analysis on China’s 

coal replacement policy. To deal with the severe air pollution from the coal-fired winter heating 

system, the Chinese government initiated a clean energy plan that eventually will replace coal with 

natural gas or electricity for heating. Combining data from multiple sources, we find that the 

benefits of replacing coal with natural gas for winter heating are likely to be larger than the costs, 

despite the high cost of switching.  

 This paper complements two recent studies that also exploit China’s winter heating policy: 

Chen et al. (2013) and Ebenstein et al. (2017). Both studies use regression discontinuity designs 

to estimate the long-term impacts of air pollution on health in China. The primary difference 

between this study and the aforementioned two is that we use variations in the timing of the start 
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of the winter heating season, while they exploit variations in geographic distance from the Huai 

River line, which is the boundary between southern China and the colder northern region, where 

centralized winter heating systems are used. We focus on the acute effect of air pollution by 

comparing health outcomes before and after the winter heating period starts, while Chen et al. 

(2013) and Ebenstein et al. (2017) estimate the long-term impact by comparing health outcomes 

between southern and northern China. We find that our estimates are smaller than the long-term 

estimates, suggesting that long-term exposure to air pollution might cause people to develop 

chronic diseases and have an even larger impact on population health.  

We conduct a set of robustness checks to strengthen the credibility of the research design. 

First, we show that weather conditions, which are typical confounding factors in estimating the 

short-term health effects of air pollution, have negligible effects on the RD estimates but can 

significantly affect associational estimates. Second, location-specific fixed effects change the 

estimated coefficients in associational approaches, but they do not affect the estimates using the 

RD design. Third, we construct placebo cut-offs by moving the switching-on date of winter heating 

before and after the actual dates, and find that the air pollution effect is only evident on the actual 

dates. Fourth, we assign a fake winter heating period to southern Chinese cities using the most 

common switching-on date (November 15th) and cannot find similar effects. Finally, we show that 

only cardiorespiratory mortality increases after the winter heating period starts suggesting that air 

pollution is the causal factor.  

The remainder of this paper is structured as follows. Section 2 provides background on the 

winter heating system. Section 3 discusses the data. Section 4 presents the empirical strategies. 

Section 5 discusses main results and a battery of robustness checks. Section 6 explores the 

heterogeneous impacts of air pollution. Section 7 applies our estimates to an exploratory benefit-

cost analysis of China’s coal-to-gas policy, and Section 8 concludes.  

 

2. Winter Heating System 

China’s winter heating system was initiated in the 1950s following the example of the Soviet 

Union and was gradually expanded during the planned economy period (1950s-1980s). The 

Chinese government limited the heating entitlement to areas located in the north because of energy 

and financial constraints (Chen et al., 2013). The dividing line between northern and southern 

China roughly follows the Huai River and Qinling Mountains along which the average temperature 
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in January is around zero Celsius.  

 The heating system connects large centralized boilers with residential and commercial 

buildings. A network of the heating system consists of a boiler, water pipelines, and radiators that 

deliver hot water to homes and offices. In northern China, the centralized winter heating service is 

provided either at a zero price or a heavily subsidized one. In contrast, state-provided centralized 

winter heating does not exist in southern China because the government arbitrarily decided that it 

was not needed south of the Huai River line. 

 Most northern Chinese cities receive free or heavily-subsidized heating between November 

15th and March 15th. For some northern cities regarded as very cold in winter (e.g., Harbin in 

Heilongjiang Province), the heating season is extended to over six months of the year, from 

October until April. City governments have discretion to determine whether winter heating starts 

early if the weather is unusually cold, on a year-to-year basis. For our identification strategy, it is 

critical to have accurate dates when the heating started for each Disease Surveillance Points (DSP) 

location. To guarantee accuracy, we collected and verified the winter heating starting dates through 

both government websites and online local community forums.  

The winter heating system is mostly coal-based and technically inefficient. Researchers 

in chemical and environmental sciences have documented that incomplete combustion of coal 

increases air pollution by generating substantial particulate matter emissions, SO2, and NOx 

(Almond et al., 2009; Muller et al., 2011). When the winter heating period starts, coal 

consumption jumps to a much higher level and leads to a rapid and substantial increase in air 

pollution. This provides a quasi-experimental setting for researchers to utilize the discontinuity 

in air pollution caused by turning on the coal-burning furnaces to estimate the impact of air 

pollution on health. 

As the evidence of the negative impacts of air pollution on health accumulates in China, 

the public increasingly demands that governments to deal with poor air quality. As a result, 

governments have initiated various programs to control emissions from the winter heating 

systems. The most notable one is the replacement of coal with natural gas or electricity as primary 

fuels for heating. The switch was first proposed in Beijing, starting in 2013, then the pilot runs 

were gradually expanded to other northern cities, including Tianjin and cities in Hebei, Shanxi, 

Shandong, and Henan in 2015 and 2016. Under this policy, the coal-fired boilers are gradually 

replaced by gas or electric boilers in urban areas; households in rural areas receive subsidies to 
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replace coal stoves with natural gas or electric stoves.3  

 

3. Data 

3.1. Mortality 

The mortality data come from the Chinese Center for Disease Control and Prevention's (CDC) 

Disease Surveillance Points (DSP) System. 4  The DSP System is a remarkably high-quality 

nationally representative survey; it provides detailed cause-of-death data for a coverage population 

of around 324 million people (nearly a quarter of the total population in China) at 605 separate 

locations (322 city districts and 283 rural counties) for each year since 2013. The community or 

hospital doctors report the cause of death to the CDC.5 This information is used to assign all deaths 

to either cardiorespiratory causes of death (i.e., heart, stroke, lung cancers, and respiratory 

illnesses) that are plausibly related to air pollution exposure or non-cardiorespiratory causes (i.e., 

cancers other than lung and all other causes). We exclude accidental deaths and suicides from our 

analysis. We use created weekly mortality datasets created for each DSP location in 2014 and 2015 

for this project.  

 

3.2. Air Pollution 

We collected comprehensive air pollution data from the National Urban Air Quality Real-time 

Publishing Platform. 6  The platform is administrated by China’s Ministry of Environmental 

Protection and publishes real-time AQI and concentrations of criteria air pollutants in all state-

controlled monitoring sites.7  

                                                 
3 A summary of the policy to switch from coal to gas/electricity policy in northern provinces can 
be found on the website of the Association of Urban Natural Gas:  
http://www.chinagas.org.cn/hangye/news/2017-06-16/39267.html.  
4 See Appendix A1 for a detailed description of the sampling and development of the DSP System.   
5 All communities were subject to strict quality control procedures administered by the CDC 
network at county/district, prefecture, province and national levels, for accuracy and completeness 
of the death data.   
6  The system is the largest real-time air quality monitoring network ever built in China, 
implementing the full coverage of municipalities, provincial capitals, cities with independent 
planning, all prefecture-level cities, key environmental protection cities, and environmental 
protection model cities. The real-time data is published on the following website: 
http://106.37.208.233:20035. 
7 Appendix A2 explains how the AQI is constructed based on six major air pollutants: PM2.5, PM10, 
SO2, NO2, O3 and CO.  

http://www.chinagas.org.cn/hangye/news/2017-06-16/39267.html
http://106.37.208.233:20035/
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 The Chinese government has mandated detailed quality assurance and quality control 

programs at each monitoring station. According to the requirements of Ambient Air Quality 

Standard (GB3095-2012), this platform was put in operation beginning in January 2013, and cities 

were added to the platform in a staggered manner.8 We collected data from 1,497 individual air 

monitoring stations during the sample period. Figure 1 shows DSP points and air monitoring sites. 

The stations cover all Chinese prefectural cities and encompass most of China's geography. We 

compute weekly air pollution data for each monitoring station by taking the mean of the hourly 

values. To assign these weekly values of pollution from the monitors to DSP locations, we: 1) 

calculate the centroid of each DSP location (either a city district or a county); 2) measure the 

distances between the monitoring sites and the center of the DSP location using the geographic 

coordinates of monitoring sites; and 3) use the weekly pollution level of the closest monitoring 

site within a 100KM radius of the DSP location. All DSP locations that did not have a monitoring 

site within a 100KM radius were excluded from the sample.  

In the matching process, we used accurate readings of the AQI or individual pollutant for 

DSP locations. The AQI level can differ dramatically across monitoring sites on a weekly basis. 

The inaccurate assignment of air pollution to DSP locations potentially introduces substantial 

measurement error bias and the direction of the bias is uncertain (Sarnat et al., 2005). As such, we 

experiment with different tolerance distances between DSP locations and monitoring sites. As a 

robustness check, we also generate a weighted average of the weekly pollution level using all 

monitors within a 50KM radius of the DSP location, using the inverse of the distance to the monitor 

as the weight. 

 

3.3. Weather 

We obtained daily weather information from Global Summary of the Day (GSOD).9 Our analysis 

uses 409 ground weather stations with nearly-complete weather data for 2014 and 2015. The 

weather information includes temperature, dew point, and precipitation. We adopt the same 

matching mechanism as we do for DSP locations and air pollution monitoring sites.  

                                                 
8 The reporting system covers 338 prefecture-level cities and 1,436 sites across the country by the 
end of 2015. 
9 The GSOD data are available for download from https://data.noaa.gov/dataset/global-surface-
summary-of-the-day-gsod.   

https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
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4. Empirical Strategy  

We begin with estimating the associations between air quality and health outcomes by fitting the 

following ordinary least square equation:  

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝛱𝛱 + 𝑑𝑑𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖    (1) 

 

where Yit is age-adjusted mortality rates in DSP location i during week t. 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 is mean air quality 

index in DSPi during week t. 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of weekly weather conditions in DSPi that might 

influence health outcomes, 𝑑𝑑𝑖𝑖 are location fixed effects capturing time-invariant characteristics of 

DSPi, and 𝜀𝜀𝑖𝑖𝑖𝑖 is a disturbance term.  

The coefficient 𝛽𝛽1 measures the effect of air quality on mortality, after controlling for the 

available covariates. Consistent estimation of 𝛽𝛽1  requires that unobserved determinants of 

mortality do not covary with 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  after adjustment for weather conditions. Thus, the 

“conventional” approach rests on the assumption that controlling for the limited set of variables 

available (often weather conditions and seasonality indicators in multi-year analysis) removes all 

sources of confounding factors. Previous research has raised substantive concerns about the 

validity of this assumption (Chay et al., 2003; Dominici et al., 2014). Further, pollution 

concentrations are measured with error and it is well known that classical measurement error will 

attenuate the coefficient associated with the air pollution variable. 

The second approach leverages the regression discontinuity (RD) design implicit in the 

winter heating policy to measure its impact on the AQI and mortality. We exploit the fact that the 

winter heating period starts on November 15th in most cities, and separately test whether turning 

on winter heating causes discontinuous changes in air quality and mortality in northern China. In 

practice, we estimate the following parametric equations to test for the impacts of winter heating:  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛼𝛼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖Φ + 𝑑𝑑𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖  (2a) 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛿𝛿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖Ψ + 𝑑𝑑𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖      (2b) 

 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 is an indicator variable equal to 1 for location i’s winter heating period, and 

𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) is a polynomial in weeks before and after the threshold. The week sequence is defined as 
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follows: t=1 for the first week after heating starts and so on; and t=-1 indicates the last week before 

the heating starts, and so on. Our main sample includes 12 weeks before and after the winter 

heating start date for each city.10 We choose the order of the polynomial in 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) based on 

goodness of fit criteria. We also include interaction terms, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖), to allow flexible 

functional forms from both sides of the threshold. The identifying assumptions are that any 

unobserved determinants of the AQI or mortality change smoothly around the dates when the 

winter heating period starts. If the relevant assumption is valid, adjustment for a sufficiently 

flexible polynomial in time before and after the heating start date will remove all potential sources 

of bias and allow for causal inference.  

The parameters of interest are 𝛼𝛼 and 𝛿𝛿, which provide an estimate of whether there is a 

discontinuity in outcomes when the winter heating period starts, relative to no heating period. If 

the RD assumptions hold, estimates of 𝛿𝛿 will provide an unbiased estimate of the change in the 

mortality rate in the week immediately after the heating started. Note that this parameter is not a 

laboratory-style estimate of the consequences of exposure to air pollution where all other factors 

are held constant, since it reflects individuals’ actions to protect themselves from the resulting 

health problems of pollution. While the laboratory-style estimate might be of interest for 

researchers interested in how air pollution affects the human body, its relevance for understanding 

the real-world consequences of air pollution is unclear. In fact, an appealing feature of the 

estimates of 𝛿𝛿  is that they reflect all the compensatory behavior that individuals undertake to 

protect themselves against air pollution, such as using air filters and wearing masks. 

The results in Equation (2) can be used to develop estimates of the impact of air quality on 

mortality. Specifically, if winter heating only influences mortality only through its impact on air 

quality, it is valid to treat Equation (2a) as the first-stage in a two-stage least squares (2SLS) system 

of equations. An important appeal of the 2SLS approach is that it produces estimates of the impact 

of units of the AQI (or other individual pollutant) on mortality, so the results are applicable to 

other settings (e.g., other developing countries with comparable air pollution levels). The second 

stage equation becomes:  

 

                                                 
10 The winter heating period of most cities in our sample is from November 15th to March 15th, 
which is about 17 weeks long. As shown in the appendix, we conduct robustness checks with 
different numbers of weeks in the appendix and find consistent results.  
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𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴� 𝑖𝑖𝑖𝑖 + 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖Θ + 𝑑𝑑𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖   (2c) 

 

where 𝐴𝐴𝐴𝐴𝐴𝐴� 𝑖𝑖  represents the fitted values from estimating (2a) and the other variables are as 

described above. The 2SLS approach offers the prospect of solving the confounding or omitted 

variables problem associated with the estimation of the impacts of air pollution, and is a solution 

to the attenuation bias associated with the mismeasurement of air pollution.  

 Although the polynomial RD approach in Equations (2a), (2b) and (2c) has been commonly 

used in the literature, a recent development in RD methodology shows that estimates based on 

high-order polynomials can be sensitive to the order of polynomials and have several other 

undesirable statistical properties (Gelman and Imbens, forthcoming). As a result, estimators based 

on local linear regression or other smooth functions are often preferred because they can assign 

larger weights to observations closer to the threshold and produce more accurate estimates. 

Because we have a panel data with a large number of DSP locations, we can estimate the RD 

parameters with sufficient statistical power, even if the bandwidth shrinks to a very small time 

horizon around the threshold. In light of this, we also estimate local linear RD using the most 

restrictive sample around the threshold: two weeks before and after the winter heating start date.  

 

5. Empirical Results 

5.1. Summary Statistics 

Table 1 reports the summary statistics for mortality, the AQI, temperature, dew point, and 

precipitation for 139 DSP locations. The sample period includes 24 weeks: 12 before and 12 after 

the starting date of winter heating. There are 3,336 DSP-week observations in the full sample. 

Column (1) reports the means along with the standard deviations for the full sample period. 

Columns (2) and (3) report the means along with the standard deviations before and after heating 

starts.  

A comparison of columns (2) and (3) shows substantial differences in the mortality rate 

and the AQI. Both the mortality rate and the AQI are higher during the heating season. For 

example, the AQI is 119 overall, 139 during the heating season, otherwise 99. Comparing urban 

with rural areas reveals that rural residents are exposed to higher AQI and also suffer a higher 

mortality rate than their urban counterparts.  
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5.2. Estimates of the Effect of the Winter Heating Policy on the AQI and Mortality Rates 

We begin the analysis graphically with an assessment of the Winter Heating Policy's impact on air 

pollution and mortality. Figure 2 plots mean AQI at DSP locations, along with the 90 percent 

confidence interval, against weeks before and after the cutoff. Each square represents the average 

AQI across locations in a particular week. The plotted line is generated by using a polynomial 

function on either side of the cutoff. The figure shows a discontinuous change in the AQI when 

the heating period starts. Figure 3 shows the RD plot for mortality rate against time. We also 

observe that the mortality rate jumps upward discretely after the winter heating period starts.  

Table 2 presents the estimated discontinuity of the AQI and mortality rates (and standard 

errors). DSP fixed effects are included for all specifications to control for location-specific socio-

economic characteristics (e.g., health facilities, medical professionals, and income) that do not 

vary in a short period of time. Columns (1) and (2) report the RD estimates from Equations (2a) 

and (2b), using the full sample and third order of the polynomial function of the running variable. 

The order of the polynomial is chosen based on the Akaike Information Criteria (AIC) of goodness 

of fit. Columns (3) and (4) report local linear RD estimates with and without weather controls. In 

all specifications, the function of the week is interacted with the heating period dummy, so that 

time is allowed to affect outcomes differently before and after the cutoff. 

Panel A summarizes the estimates for the AQI. In the polynomial RD specifications, the 

AQI increases by 71 units after winter heating is turned on. The estimates are slightly reduced to 

56 units after weather conditions are controlled. In the local linear case, the AQI rises by 35 units 

at the threshold and the increase is very robust to the inclusion of weather controls.11 In Panel B, 

we find that mortality also increases at the threshold. Polynomial RD results show a discontinuity 

in mortality rates by 7-8 percent; and the local linear regression results show an increase of 14 

percent.  

Note that the RD estimates using the local sample (|𝑇𝑇| ≤ 2) are more robust than the global 

polynomial RD estimates. In Appendix Table A1, we report results from different orders of global 

polynomial RD approach and find that the results tend to be sensitive to the choices of polynomial 

functions, an undesirable feature discussed in Gelman and Imbens (2017). We therefore focus 

primarily on the local linear RD results for the rest of the discussion, and present the polynomial 

                                                 
11 The average AQI for northern cities during the week before turning on the winter heating is 117.  
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RD results mainly for comparison and as a way of checking the robustness of the results. 

 

5.3. Estimates of the Effect of Air Pollution on Mortality Rates 

Table 3 reports the estimated effects of a 10-point change in the AQI on mortality rates using OLS 

and 2SLS approaches. Panel A shows 2SLS estimates from the RD design. Panel B reports OLS 

estimates. Columns (1) and (2) include a third-order polynomial of the running variable and its 

interactions with the heating-on dummy. Columns (3) and (4) estimate linear regressions with a 

local sample around the threshold.  

We find that OLS produces substantially smaller estimates and that weather controls 

decrease OLS estimates considerably. In contrast, the 2SLS approach produces stable estimates 

across different specifications. When weather conditions are controlled, the 2SLS approach 

produces substantially greater estimates of the health effects of the AQI than OLS. Specifically, 

the column (4) estimate from OLS suggests that a 10-point increase in the AQI is associated with 

a statistically significant increase in mortality rate of 0.55 percent when we use the full sample and 

control for weather conditions. The column (4) estimate from the 2SLS approach indicates that a 

10-point increase in the AQI increases mortality by 3.8 percent. The greater magnitude of these 

2SLS estimates suggests that some combination of omitted variables and measurement error 

reduces the magnitude of the OLS estimates relative to the true effect of the AQI on mortality 

rates.  

 

5.4. Evaluating the Validity of the Research Design 

To assess the validity of the RD research design, we conduct two placebo tests showing that the 

impacts are only evident using the actual winter heating switching-on time, and only for northern 

China. Panel A of Table 4 reports the 2SLS estimates of the impact of the AQI on mortality rates 

at one-week intervals before and after the actual switching-on date, as well as at the actual date. 

The results show that the only statistically significant effects occur at the actual threshold. In all 

other instances, estimates are either statistically indifferent from zero or have the wrong sign. A 

second placebo test uses southern cities and a fake switching-on date (we use the most common 

date of November 15th). Estimates for southern cities should be small and insignificant because 

winter heating does not exist in the south. We find that the 2SLS estimates in Panel B of Table 4 

are consistent with our prediction. These results provide further evidence that the effects in Table 
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3 are due to winter heating, rather than an artifact of this application of the 2SLS approach. 

For an instrumental variable to be valid, it must only affect mortality only through its 

impact on air pollution. We check the validity of the instrumental variable in two ways. First, we 

check whether the results are robust to the inclusion of DSP fixed effects. If controlling for location 

fixed effects changes the estimates substantially, this would indicate that location-specific missing 

variables affecting mortality are correlated with the instrumental variable. In this case, the validity 

of the “heating-on” as the instrumental variable would be questionable and the estimates might not 

be reliable. Panel A of Table 5 shows that the OLS estimates change substantially when DSP fixed 

effects are included in the regressions. In contrast, for the 2SLS estimates, including DSP fixed 

effects has little impact. This suggests that the instrumental variable is not correlated with DSP-

specific characteristics. Second, it is well documented that weather conditions are important 

confounders in estimating the health effects of air pollution because they change air pollution 

levels and also affect human health. Panel B of Table 5 shows estimates with different weather 

controls. OLS estimates change substantially when the weather controls are included. 2SLS 

estimates stay stable for different weather controls. In conclusion, these results show little evidence 

that the winter heating variable is correlated with unobserved potential confounding factors.  

 Finally, as has been documented in the literature (Ebenstein et al., 2017; He et al., 2016), 

air pollution affects only cardiorespiratory diseases. We conduct a similar analysis by estimating 

the impacts of winter heating on cardiorespiratory and non-cardiorespiratory mortality separately. 

The division of cardiorespiratory and non-cardiorespiratory mortality is based on the ICD10 code. 

Cardiorespiratory mortality includes deaths caused by respiratory diseases (J30-J98), respiratory 

infections (J00-J06, J10-J18, J20-J22, H65-H66), lung cancers (C33-C34), and cardiovascular 

diseases (I00-I99). Non-cardiorespiratory mortality includes all other causes except injuries (V01-

Y89). Table 6 presents the estimation results. The empirical results bear out such predictions: in 

all specifications, a statistically significant increase in cardiorespiratory mortality rates is found at 

the onset of the winter heating period. In contrast, the change in mortality rates of non-

cardiorespiratory illnesses is much more modest and statistically insignificant. These findings 

confirm that air pollution is the causal factor that leads to a sharp increase in mortality after winter 

heating is turned on. 

 

5.5. Robustness Checks 
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In this section, we check the robustness of our results and investigate whether our results were 

affected qualitatively by the decisions made in our study along several dimensions.  

First, we experiment with different numbers of weeks before and after the threshold 

because RD estimates might be sensitive to different samples. Table A2 in the Appendix shows 

the results of different numbers of weeks because RD estimates might be sensitive to different 

samples. We use the preferred polynomial model in Table 2. All results are qualitatively similar to 

the main estimates.  

Second, we chose the nearest monitoring station within a 100KM tolerance distance, 

though we acknowledge that other choices could have been made. Table A3 examines the 

sensitivity of the results to other choices of acceptable distance from a DSP location to its nearest 

monitoring stations. In addition to using the closest monitoring station, we also use a distance-

weighted set of monitoring stations. Results show that our main findings are not affected by our 

choice of acceptable distance or matching rules. Table A4 presents analogous results for local 

linear regressions. We find that the local linear estimates are also rather stable to different sets of 

DSP locations selected by the tolerance distance.  

 Third, Beijing is the first city that started the switch from coal to gas for its traditional coal 

boilers in order to battle air pollution in 2013. According to a city government report, by the end 

of 2014, Beijing had retired forty-four thousand coal boilers and finished a coal to clean energy 

transfer for another seventeen thousand coal boilers.12 Therefore, Beijing can be treated as a 

“contaminated” city in our natural experimental design and might cause downward bias to our 

estimates. We thus re-estimate the equations after excluding all 9 DSP locations that belong to the 

Beijing area. Appendix Table A5 presents the estimates without DSP locations in Beijing. We find 

that the estimates are similar to the main results in Tables 2 and 3.  

 

6. Heterogeneity 

We explore the heterogeneous impacts of winter heating on mortality in Table 7.13 In Panel A, we 

compare urban with rural areas. The results show that winter heating has no significant impact on 

                                                 
12 The coal to clean energy transfer statistics are reported on Beijing’s city government website at 
http://zhengwu.beijing.gov.cn/gzdt/bmdt/t1373103.htm.  
13 For rural and urban areas, and for regions with different income levels, we estimate the impacts 
of turning on winter heating on AQI and present the results in Table A6.  

http://zhengwu.beijing.gov.cn/gzdt/bmdt/t1373103.htm
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mortality rates in urban areas. In sharp comparison, we find a 21 percent increase in mortality rates 

when the heating period starts in rural areas. The results are robust to the inclusion of the weather 

conditions in the model and across different specifications.  

The differences between rural and urban areas are striking, as they suggest a form of a 

largely ignored environmental inequality that has been largely ignored: the free winter heating, as 

a welfare system that mainly serves urban populations, results in sudden deterioration in air 

pollution beyond urban areas. This sudden deterioration of air pollution kills people – mainly rural 

people living nearby the urban cities.  

Many factors may contribute to this difference, including information, avoidance behavior, 

medical conditions, and air pollution exposure. First, air pollution information is more available 

for urban populations because the city governments publish real-time air quality data online and 

issue haze alerts when air pollution levels are high. In contrast, air pollution information is largely 

absent in rural areas. Second, because urban residents are more aware of the harmful effects of air 

pollution, they are more likely to adopt avoidance behaviors. Urban residents often wear face 

masks, use air filters, and reduce outdoor activities when air quality deteriorates, while most rural 

residents are not aware of the risks or cannot afford such expenditures. Third, rural residents lack 

immediate access to emergency medical care. When the sudden spike in air pollution triggers 

strokes, heart attacks, or acute respiratory diseases, rural residents are more likely to die due to 

lack of immediate medical treatment. Finally, the total exposure to air pollution of rural residents 

may be several times higher than that of urban residents, because rural residents spending more 

time working outdoors and may also suffer from severe indoor air pollution caused by biomass 

and coal combustion.  

We also collect GDP per capita data for DSP locations in the sample. We divide the sample 

into three groups as high, medium, and low GDP per capita. Panel B of Table 7 shows similar 

differences between poor and rich areas. For the low-income areas, we estimate that the increase 

in mortality at the threshold is 28 percent in our preferred specification. For the medium-income 

areas, the magnitude of the estimate decreases significantly and it becomes statistically 

insignificant. For high-income areas, the estimates are close to zero and statistically insignificant. 

The results indicate that wealth mitigates the health impact of air pollution in China. The possible 

channels of this wealth effect could be similar to those discussed in connection with the rural and 

urban differences. In some related studies, Ito and Zhang (2017) find that high-income families 
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are willing to spend significantly more on air filters than low-income families; Sun et al. (2017) 

find richer people spend more money on protection against air pollution especially when air 

pollution levels are higher.  

To account for the gender difference, we analyze males and females separately. Panel C 

presents the gender-specific estimates. The winter heating has positive and significant impacts on 

mortality rates for men, but the effect is statistically insignificant for women. For example, in our 

preferred specification (column (4)), we estimate that the increase in mortality at the threshold is 

16 percent for men. For women, the estimate is 11 percent but statistically insignificant. In 

summary, men are more likely than women to die if the air quality suddenly deteriorates. In 

Appendix Table A7, we further stratify the sample by both gender and location. We find that in 

urban areas, the estimates are insignificant for both sexes. We find a consistent positive and 

significant impact only for males in the rural area. Therefore, the significant results for males in 

Table 7 are driven by more deaths in rural areas. One explanation to this gender heterogeneity is 

that the actual pollution exposure between males and females can be very different. In rural areas, 

men are more likely to work outdoors in the fields and thus men are exposed to a higher dose of 

air pollution. Another possible explanation is that males in general have poorer cardiorespiratory 

functions than females due to smoking and drinking.14 When air quality deteriorates, men are more 

likely to die because more of them have pre-existing cardiorespiratory diseases. However, these 

explanations are highly conjectural, and future research is warranted to further investigate the 

causes of this gender difference.  

Finally, we investigate the impact of winter heating on mortality for different age groups. 

As reported in Panel D of Table 7, our results reveal a significant difference between young and 

old people. The results indicate that the winter heating has no impacts for people younger than 60. 

In contrast, winter heating increases mortality rates by 9 percent for people older than 60 in our 

preferred specification. This difference is reasonable because younger people have a stronger 

immune systems and fewer pre-existing health problems. Sudden pollution spikes thus have 

smaller impacts on young people than on old people. This finding is consistent with a previous 

study which estimates the monthly effect of air pollution on mortality using the 2008 Beijing 

                                                 
14 For example, the Chinese CDC reports that more than 50% of Chinese men smoke, but only 2.7% 
of women smoke in 2015. The report can be accessed at:  
http://www.tcrc.org.cn/UploadFiles/2016-03/318/201603231215175500.pdf.  

http://www.tcrc.org.cn/UploadFiles/2016-03/318/201603231215175500.pdf
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Olympic Games as a natural experiment (He et al., 2016). We also stratify the sample by age and 

location and find the results are driven by old people in rural areas.  

Table 8 present the heterogeneity analysis for IV estimates. Panel A shows that a 10-point 

AQI increase leads to a 5.86 percent increase in morality in rural areas, while no significant effect 

is found in urban areas. Panel B indicates a similar mitigating effect of wealth on air pollution 

impact: consistent positive impact is only found only in the low-income group, based on GDP per 

capita. Panel C still shows that only males’ mortality rate increases as the AQI suddenly rises. 

Panel D shows that only people older than 60 are affected by short-term air pollution change: a 

10-point AQI increase leads to a 2.61 percent increase in mortality rate.  

 

7. Comparison with Related Studies in the Literature 

Existing epidemiological estimates largely focus on individual air pollutants such as PM2.5 instead 

of an index like the AQI. As discussed in Appendix A2, the AQI is calculated based on the 

maximum pollutant concentration among six criteria air pollutants. In calculating the AQI, the 

primary pollutant is defined as the one with the maximum concentration. During our sample 

period, PM2.5 is the primary pollutant over 90 percent of the time. Within two weeks before and 

after the threshold, PM2.5 is also the primary pollutant for over 90 percent of the time. Presumably, 

the health impacts of the AQI are driven by the primary pollutant (i.e., PM2.5). Therefore, we 

replace the main explanatory variable, the AQI, by PM2.5 concentrations and generate results that 

can be used for comparison.   

 Table 9 presents the 2SLS results for PM2.5 concentrations. Columns (1) and (2) present 

results using 2SLS, where the heating-on dummy is an excludable instrument for PM (after 

controlling for other factors, including the polynomial function in weeks). Columns (3) and (4) 

present local linear results. The local linear estimate of column (4) suggests that an additional 10 

μg/m3 of exposure is associated with a 3.9 percent increase in mortality rate. We also estimate the 

impacts of PM2.5 on cardiorespiratory and non-cardiorespiratory mortality separately and compare 

the results. We find that the estimates on cardiorespiratory mortality are substantially greater than 

those on non-cardiorespiratory mortality. A 10-μg/m3 increase in PM2.5 is associated with a 4 

percent increase in mortality from cardiorespiratory diseases. However, we fail to find a significant 

impact on mortality from non-cardiorespiratory diseases at the 5 percent level.  

 Many epidemiological studies assess the short-term association between fine particulates 
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and health outcomes. We compare our results with several studies in China, the United States, and 

other counties. The goal is not to conduct a comprehensive literature review on the estimates, so 

we primarily focus on time-series estimates published in recent years. Table 10 lists those studies. 

Zhou et al. (2015) examine the association between smog episodes and mortality in five cities and 

two rural counties in China in 2013. They find that a 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 increase in two-day average PM2.5 

is associated with a 0.6-0.9 percent increase in all-cause mortality. Shang et al. (2013) review 

seven PM2.5 studies that focus on one to three cities in China including Beijing, Shanghai, 

Guangzhou, Xi’an, Shenyang, and Chongqing. Their meta-analysis shows that a 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 

increase in PM2.5 concentrations is associated with a 0.5 percent increase in respiratory mortality, 

and a 0.4 percent increase in cardiovascular mortality. Franklin et al. (2008) examine 27 U.S. 

communities between 1997 and 2002 and show that a 1.21 percent increase in all-cause mortality 

was associated with a 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 increase in the previous day’s PM2.5 concentrations. Kloog et al. 

(2013) study the short-term effects of PM2.5 exposures on population mortality in Massachusetts 

in the United States, for the years 2000–2008. The results show that, for every 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 increase 

in PM2.5 exposure, PM-related mortality increases by 2.8 percent. Atkinson et al. (2014) conduct 

a review of global time series studies of PM2.5 and mortality. Based upon 23 estimates for all-cause 

mortality, they show that a 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 increment in PM2.5 was associated with a 1.04 percent 

increase in the risk of death.  

Compared with past epidemiological studies, our estimates are substantially larger. Our 

results show that a 10-𝜇𝜇𝜇𝜇/𝑚𝑚3 change in weekly average PM2.5 concentrations would lead to a 3.9 

percent change in all-cause mortality, and a 4 percent change in cardiorespiratory mortality. The 

difference suggests that estimates derived from associational approaches may under-estimate the 

health impacts of air pollution. 

However, compared with long-term cohort studies of the effect of PM2.5 on mortality (Pope 

et al., 2002; Pope et al., 2004), our estimates are smaller. In particular, Ebenstein et al. (2017) 

investigate the long-term effect of the Winter Heating Policy in China and estimate that a 10-

𝜇𝜇𝜇𝜇/𝑚𝑚3  increase in long-term exposure to particulate matter (i.e., PM10) increases 

cardiorespiratory mortality by 8 percent, which is greater than the estimate in this study (PM2.5 

accounts for roughly 70% of PM10 in our data). The comparison suggests long-term exposure to 

air pollution imposes a greater risk to people’s health than short-term exposure does.  
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8. Benefits and Costs of Replacing Coal with Natural Gas for Winter Heating 

To deal with the severe air pollution during the winter heating season and its negative health 

consequences, Chinese governments have initiated ambitious clean energy programs that are 

meant to gradually replace coal with natural gas as the main fuel for winter heating. The Chinese 

government also prioritizes household-use natural gas and imposes restrictions for industrial and 

other usages of natural gas.15 The strictest restrictions on the use of coal were implemented in the 

winter of 2017; Beijing and many neighboring cities banned coal heating and switch to gas. These 

policies were immediately effective in reducing air pollution. For example, compared to the air 

pollution levels in 2014, the mean PM2.5 concentrations in December 2017 was 50% less in Beijing.  

 The coal replacement plan is controversial. China has abundant resources of coal, but lacks 

a large supply of natural gas. China imports almost 40% of its natural gas and is expected to import 

an even larger share in the future (IEA, 2017). Critics argue that a wholesale substitution of coal 

with natural gas (“shock therapy”) would cause natural gas shortages in China or possibly 

internationally. They argue that “shock therapy” would threaten China’s energy security. 16 

Concerns are also raised because the higher prices of natural gas will impose hardships on the poor. 

Critics argue that governments provided subsidies for natural gas are inadequate, and that Beijing’s 

blue skies were at the cost of poor.  

 Despite these controversies the Chinese governments are working to increase replacement 

of coal with cleaner energy. According to the “Clean Energy Plan for Winter Heating in Northern 

China, 2017-2021” from the Ministry of Environmental Protection of China, by 2021 more than 

150 million tons of winter-heating coal will be replaced and more than 90% of heating boilers will 

use cleaner energy such as natural gas or electricity.17 Beijing, Tianjin and twenty-six other major 

northern Chinese cities are required to implement the Clean Energy Plan. The substitution of 

cleaner energy for coal may bring about significant health benefits, but the change can also be 

                                                 
15 Natural Gas Utilization Policy (NDRC, 2012) can be accessed from the government website: 
http://www.gov.cn/gongbao/content/2013/content_2313190.htm.  
16 In the winter of 2017, China faced a serious gas shortage as the governments banned the use of 
coal as the winter heating fuel. The gas shortage implies that the ambitious energy swap plan was 
ill-prepared. Many people had to suffer from cold because of the shortage. The MEP then directed 
local governments to allow households to burn coals if the supply of natural gas was not sufficient. 
See for example: https://www.ft.com/content/6fbc6dac-db13-11e7-a039-c64b1c09b482. 
17 The plan can be accessed from: 
 http://www.ndrc.gov.cn/zcfb/zcfbtz/201712/W020171220351385133215.pdf.  

http://www.gov.cn/gongbao/content/2013/content_2313190.htm
https://www.ft.com/content/6fbc6dac-db13-11e7-a039-c64b1c09b482
http://www.ndrc.gov.cn/zcfb/zcfbtz/201712/W020171220351385133215.pdf
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costly. Here, we provide back-of-the-envelope estimates on the benefits and costs of the policy. 

While not precise, our estimates give some ideas over the range and magnitude of the costs and 

benefits of replacing coal with natural gas.  

 

8.1. Averted Deaths from Cleaner Air and Their Values  

First we estimate the number of premature deaths that could be averted if air pollution in northern 

China is reduced by the substitution of natural gas for coal. We compare the AQI values between 

northern and southern DSP locations during the winter. Using the period from November 15th, 

2014 to March 15th, 2015, we find that the average AQI in northern China was 37.6 units higher 

than that of southern China. We estimate that a 10-point increase in the AQI results in 3.8 percent 

increase in weekly all-cause mortality rate. Given that the age-adjusted mortality rate per 100,000 

is 10.64 in our sample and there are 594 million residents living to the north of the winter heating 

line according to the 2010 Census, a crude calculation indicates that over 144,000 premature deaths 

per winter could be avoided if northern residents were not exposed to the extra air pollution caused 

by burning coal.18  

Using the value of a statistical life (VSL), expressed as the amount of money that people 

are willing to pay to reduce their risk of dying, we provide estimates on the monetary value of the 

averted deaths. Qin et al. (2013) is the only study that estimates the VSL for the Chinese at the 

national scale and, separately, for urban and rural residents. Using China’s 2005 Census data, Qin 

et al. (2013) estimates that the VSL using the national sample is about 1.81 million RMB. The 

VSL of urban workers is 3.84 million RMB, which is 4.3 times that of rural workers (0.89 million 

RMB). Note that these values were derived from 2005 data. As incomes rise, the VSL of the 

Chinese should, in all likelihood, also rise. We follow the guidelines of OECD (2012) and use an 

income elasticity of 0.9 for mid-income countries to adjust the VSL. From 2005 to 2016, China’ 

per capita GDP has increased from 1,750 USD to 8,120 USD, a 364% rise in relative scale. That 

implies that the average VSL of a typical Chinese would be around 5.86 (=1.81*3.64*0.9) million 

RMB or 0.87 million USD in 2016. An urban Chinese would have a VSL of 12.58 (=3.84*3.64*0.9) 

million RMB or 1.88 million USD, while a rural resident’s VSL would be 2.92 (=0.89*3.64*0.9) 

                                                 
18 We calculate the averted deaths as follows: mortality rate×northern population×pollution effect 
on mortality×south-north difference in AQI×weeks in the heating season. We use 16 weeks (from 
November 15th to March 15th) as the heating season.  
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million RMB or 0.44 million USD in 2016.19 In comparison, the VSL of an average American is 

between 6 million and 10 million USD (Doucouliagos et al., 2014), which is seven to eleven times 

higher than our calculation. We consider the calculations of the VSL as reasonable and note that 

the U.S. VSL was a multiple of our Chinese estimate, the multiple of per capita GDP income in 

the United States was seven times as much as in China in 2016;20 this approximates the multiple 

of the American VSL over the Chinese. 

Table 11 summarizes our benefit calculations. We first monetarize the benefit of averted 

premature deaths. Recall that there are an estimated 144,000 more deaths per year as a result of 

heating with coal; the majority of the deaths are of older people in rural areas. If we use 2.92 

million RMB as the VSL for a rural resident, the total monetary value of 144,000 averted rural 

deaths will be converted to about 420 billion RMB or 62.7 billion USD. We further discount the 

benefits based on the empirical results that only old people suffered from higher mortality rates 

upon the start of the heating season. In the literature researchers show that the VSL can be 

discounted by age (see Aldy and Viscusi (2007) for more details). Therefore, we calculate the 

monetary value of averted deaths using a discount rate of 70%,21 which gives us an annual benefit 

estimate of 126 billion RMB or 18.8 billion USD. This estimate reflects both the rural-urban 

difference and the young-old gap in the VSL.  

 Aside from averted premature deaths, improved air quality will also reduce morbidity and 

defensive expenditures. However, these benefits are generally smaller. We utilize estimates from 

the literature to quantify the benefits of reduced morbidity and defensive expenditures. Jia Barwick 

et al. (2017) estimate that a reduction of 10 µg/m3 in PM2.5 would lead to total annual savings of 

11.7 billion USD in health spending in China, implying that 4.2 billion USD can be saved in 

medical spending if northern China’s air quality becomes similar to southern China’s during the 

                                                 
19 Throughout the paper, we use the annual average exchange rate between dollar and RMB: 1 
dollar for 6.7 RMB. 
20 Per capita GDP in each county is from World Bank national accounts data and OECD National 
Accounts data which are available at https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.  
21 Discounting VSL by age is controversial in the literature and our estimates should be interpreted 
with caution. In a 2000 analysis for the Canadian government (Hara and Associates Inc., 2000), 
the VSL used for the over-65 population was 25% lower than the VSL for the under-65 population. 
When the US Environmental Protection Agency (EPA, 2003) prepared an illustrative analysis of 
the Clear Skies Initiative in which it used a VSL estimate for those aged 65 and older that was 37% 
lower than for those aged 18–64. More generally, European Commission (2001) recommended 
that its member countries value benefits using VSL levels that decline steadily with age. 

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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winter season. Ito and Zhang (2016) use air filter sales data to estimate the Willingness to Pay 

(WTP) for clean air, and find that in northern China a household is willing to pay about 43 USD 

per year for clean air. Aggregating over the relevant population, this amounts to approximately 

2.65 billion USD per winter. These estimates aggregate to a total benefit for the reduction in air 

pollution of at least 26.85 billion USD per winter.  

Note that the estimates of benefits above are based on short-term impacts of air pollution. 

In the long run, exposure to air pollution leads to development of chronic diseases and decreases 

the life expectancy of northern residents. Ebenstein et al. (2017) estimates that air pollution from 

the heating systems reduces life expectancy by 3.1 years for northern residents. The life expectancy 

in China is 76 years. That implies that each year a northern resident loses 3.1/76 years of life 

expectancy due to air pollution from the heating boilers. The gain in life expectancy would be 

approximately 24.2 million life years for northern residents if coal is replaced by natural gas. We 

value each life year as the VSL divided by life expectancy, i.e., 5.86million/76 years = 77.1 

thousand yuan (11.5 thousand USD). Therefore, we estimate that the monetary benefit in terms of 

gains in life expectancy is 1,866 billion RMB (278 billion USD) per year. In other words, the 

benefits in the long run are substantially higher than in the short run.  

 

8.2. Cost of Replacing Coal with Natural Gas 

The cost of replacing coal with natural gas include two main components: 1) expenditures on new 

stoves and pipelines, and 2) operational expenditures (fuel and maintenance).22 To the best of our 

knowledge, the Chinese government did not provide a total cost estimation for the clean energy 

plans. This presents challenges for our analysis, as we do not have accurate numbers for some 

important cost components. In the following we make several simplifying assumptions. First, we 

assume that the change in operational and maintenance costs from coal-fired to gas-fired stoves is 

negligible.23 Under the assumption of equal maintenance costs, then the increased fuel cost and 

infrastructure investments are major costs involved in switching to gas. Second, the estimates for 

fuel costs are derived from data of survey conducted by Renmin University; we applied them to 

                                                 
22  Pipeline constructions and new stove installations are heavily subsidized by Chinese 
governments. Households only pay a negligible amount for replacing their coal-fired stoves. In 
contrast, households are responsible for covering most of the fuel cost despite subsidies. 
23 There is some evidence that this is not correct; gas-fired stoves are technically more complicated 
and may have a higher maintenance cost.  
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all of northern China. Third, we use Beijing’s “Coal to Gas” project approved by the Asian 

Infrastructure Investment Bank (AIIB) to estimate the total cost of the required infrastructure and 

assume a life expectancy of 20 years. 

Xie et al. (2018) conducted a comprehensive survey in a community (660 households) in 

Beijing and collected detailed information about the costs of replacing coal with natural gas. The 

community replaced coal-based heating systems with gas-based ones in 2017. According to the 

survey, the average annual fuel cost for natural gas is around 7,000 RMB for each household for 

the winter; that is approximately 3,000 RMB more than costs of using coal. Public media also 

reported fuel cost estimations through interviewing the households who experienced the coal to 

gas switch. According to the news articles, an average household with a 100 square meters house 

will spend 2,000 to 4,000 RMB more on fuel cost during the 2017 winter.24 Northern China has 

approximately 200 million households. If all of them substitute natural gas for coal, then the total 

increased fuel cost will be approximately 600 billion (=3000×200 million) RMB or 89.6 billion 

USD every year.  

The Beijing municipal government has submitted a project proposal to the Asian 

Infrastructure Investment Bank (AIIB) to request a loan for implementing Beijing’s 2017-2020 

Rural “Coal-to-Gas” Program in 2017.25 According to the project implementation plan, Beijing 

will install natural gas infrastructure for 216,751 user households in 510 villages during 2017-

2020. The project will cover pipelines, regulator boxes and meters. The total investment proposed 

for the whole project is 3,318.48 million RMB. We assume that the equipment lasts for 20 year 

and a 6% interest rate; the annual fixed cost is 285.24 million RMB for 216,751 households. Based 

on the cost estimation of the pipeline construction in Beijing, installing natural gas infrastructure 

for 200 million northern households will cost approximately 263 billion RMB or 39 billion USD 

every year.  

Replacing a new gas stove for a household costs from 5,000 to 10,000 RMB. We assume 

                                                 
24 Many news media report the cost of natural gas: http://www.qdaily.com/articles/48092.html; 
and http://news.dichan.sina.com.cn/2017/09/07/1248573.html. 
25 The detailed project description can be found on the AIIB’s website:  
https://www.aiib.org/en/projects/approved/2017/air-quality-improvement-coal-replacement.html. 
The estimates of the total cost are described in the Environmental and Social Management Plan: 
https://www.aiib.org/en/projects/approved/2017/_download/beijing/environment-social-
management-plan.pdf.  

http://www.qdaily.com/articles/48092.html
http://news.dichan.sina.com.cn/2017/09/07/1248573.html
https://www.aiib.org/en/projects/approved/2017/air-quality-improvement-coal-replacement.html
https://www.aiib.org/en/projects/approved/2017/_download/beijing/environment-social-management-plan.pdf
https://www.aiib.org/en/projects/approved/2017/_download/beijing/environment-social-management-plan.pdf


23 
 

the same life expectancy for gas stove and the same interest rate; the annual cost is from 430 to 

860 RMB. In total, new stove expenditures will amount to 86 billion to 172 billion RMB or 13 

billion to 26 billion USD per year.  

In sum, adding up the cost estimates gives us a rough estimate of the total annual cost of 

replacing coal with natural gas; that is between 949 billion to 1,035 billion RMB or 142 billion to 

154 billion USD.  

 

8.3. Discussions 

The unsystematic and preliminary benefit-cost analysis presented here suggests that the short-run 

costs of replacing coal with natural gas are greater than its benefits; but the long-run health benefits 

seem to substantially outweigh the costs. Nevertheless, one should interpret the cost and benefit 

estimates with caution because the data available are incomplete and we rely on a number of 

assumptions that may overly simplify the real-world situations.  

Mortality displacement, economic growth, and other factors relating to benefit analyses 

affect our estimates of the economic impact of air pollution. In the literature, mortality 

displacement (also referred to as harvesting effect) denotes a temporal or temporary increase in 

the mortality rate (number of deaths) that is attributable to a sudden deterioration of air quality. 

After some periods with excess mortality, the overall mortality may decline during the subsequent 

days or weeks, because the most vulnerable groups have been died. The concern is that the VSL 

of a healthy individual should be very different from that of a close-to-death individual. Because 

we are unable to identify the close-to-death individuals and do not discount their VSL of them, our 

calculation of the short-term health benefits may be overstated. However, the rate of economic 

growth will positively impact the VSL, somewhat mitigating the effects of the close-to-death 

individuals. As people become richer the VSL and willingness to pay for clean air of will steadily 

increase. Air pollution also affects agricultural yields, labor productivity, and tourism; these factors 

would further increase the benefits of clean air. World Bank (2016) estimates that exposure to 

ambient and household air pollution causes enormous welfare losses amounting to as much as 7.5 

percent of GDP in East Asia; consequently, using these estimate yields greater benefits.  

 On the cost side, estimates are sensitive to the price of natural gas. The Chinese natural gas 

market is still embryonic, changing from a regime of regulated prices to a market-based price 

system during the 12th Five-Year Plan period (2011-2015). Market mechanisms are new to both 
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governments and natural gas suppliers; currently expansion of natural gas consumption still faces 

significant economic and institutional barriers. The natural gas shortage of the winter of 2017 

shows that the market mechanism is far from mature. If in the future the greater demand for natural 

gas drives up the price, the cost of replacing coal with natural gas will be higher still. In that case, 

poor households and rural households may become unable to afford cleaner energy. Appropriate 

governmental policies may be able to alleviate these possible problems and resources should be 

used to explore ways to ameliorate the problems faced by the poor in the switch to natural gas. 

 

9. Conclusion 

This paper estimates the acute effect of air pollution on mortality in a regression discontinuity 

design based on China’s coal-fired winter heating policy. We compare air pollution and mortality 

rates immediately before and after the winter heating is started, and find that the increased air 

pollution caused by switching on winter heating results in a higher mortality rate in northern China. 

Heterogeneity analyses reveal that elevated air pollution has greater impacts on rural residents than 

on their urban counterparts, affects the old more than the young, and are more detrimental to males 

than females. We believe the estimates using a sample from the rural areas are closer to the true 

effects of air pollution because rural residents are less aware of the air pollution impacts and do 

not adopt avoidance measures.  

More than half of the world’s population lives in rural areas where accurate air quality 

information is largely non-existent. Our findings suggest air pollution can impose significant 

health risks on those people, and failure to take the rural population into account when making 

environmental policies may result in significant welfare loss.  

 The sharp comparison between urban and rural areas as well as between poor and rich areas 

suggests that income inequality has affected Chinese people’s quality of life through its impact on 

individual pollution exposure. Poor people and rural residents are de facto disproportionally 

affected by high levels of air pollution. In addition to short- and long-term health impacts, air 

pollution exposure could also affect cognitive performance, labor productivity, and human capital 

accumulation (Chang et al., 2016; Currie et al., 2014; Lavy et al., 2014). Given the differential 

impacts of air pollution on different socioeconomic groups, future research is warranted to 

understand causal factors resulting in such drastic differences and to provide policy implications 

for designing policies that bridge the rich/poor and urban/rural gap. 
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 These results also imply that policies that aim to transfer pollution from urban to rural (or 

rich to poor) areas should be reconsidered with tighter scrutiny. Presumably, moving polluting 

firms or industries from urban areas to rural areas can be welfare-improving (in terms of saving 

more lives) because urban areas have higher population density. However, as shown in our 

analysis, if the impacts of air pollution are larger in rural areas, then shifting polluting industries 

from urban to rural areas (or from rich to poor areas), may lead to more deaths. To date, much of 

the effort to address air pollution in China has focused primarily on urban areas, and our findings 

highlight the urgency of making a change in the scope of policy coverage.  

 Together with Chen et al. (2013) and Ebenstein et al. (2017), our findings show that the 

coal-fired winter heating system significantly affects people’s health, in both the short and long 

run. Replacing the coal-fired winter heating system is likely to bring about significant health 

benefits. Our exploratory benefit-cost analysis of China’s coal replacement policy shows that long-

term health benefits resulting from using cleaner energy are likely to outweigh the costs.  
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Table 1. Summary Statistics 

 Overall 
Before Winter 
Heating Starts 

After Winter 
Heating Starts 

  (1) (2) (3) 
Mortality (per 100,000, log) 2.39  2.31  2.47  

 (0.33) (0.30) (0.34) 
Urban 2.32  2.25  2.39  

 (0.29) (0.26) (0.29) 
Rural 2.45  2.37  2.54  

 (0.35) (0.32) (0.35) 
AQI 119.11  99.00  139.22  

 (52.19) (43.29) (52.60) 
Urban 112.71  92.93  132.48  

 (47.16) (39.82) (45.64) 
Rural 124.27 103.88  144.66  

 -55.39 (45.33) (57.04) 
Temperature 47.05  61.98  32.12  

 (17.65) (9.39) (9.43) 
Dew Point 31.41  49.12  13.71  

 (21.35) (12.42) (11.40) 
Precipitation 0.05  0.09  0.01  

 (0.11) (0.15) (0.04) 

PM2.5 (µg/m3) 83.97  66.73  101.21  
 (46.96) (38.25) (48.52) 

Observations 3,336 1,668 1,668 
Notes: Mortality is age-adjusted mortality per 100K. Temperature and dew point are in 
Fahrenheit. Precipitation is in inches. The sample period includes 12 weeks before and after 
winter heating starts in 139 northern Chinese cities/counties. The first column is mean and 
standard deviation for all 24 weeks. The second column is for 12 weeks before the heating 
starts. The third column is for 12 weeks after the heating starts. The number of observations 
for urban and rural areas are 1,488 and 1,848 respectively.    
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Table 2. RD Estimates of the Impacts of  Winter Heating     
   Global Polynomial  Local Linear 
    (1) (2)   (3) (4) 
Panel A: RD Estimates of Winter Heating on AQI    
 Heating On 71.29*** 55.90***  34.82*** 35.97*** 
  (8.04) (6.46)  (5.88) (5.89) 
 R-Squared 0.55 0.61  0.59 0.63 
       
Panel B: RD Estimates of Winter Heating on Mortality (log)  
 Heating On 0.07** 0.08***  0.14*** 0.14*** 
  (0.03) (0.03)  (0.04) (0.04) 
 R-Squared 0.45 0.45  0.70 0.70 
       
 Weather Controls N Y  N Y 
 DSP Fixed Effects Y Y  Y Y 
 Polynomial Function Cubic Cubic  - - 
 Observations 3,336 3,336  556 556 
  Sample ± 12 weeks ± 12 weeks   ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the 
coefficient on a "heating-on" dummy after controlling for polynomial functions in weeks 
before/after the cutoff interacted with a "heating-on" dummy in columns (1)-(2). In columns 
(3)-(4), we include only 2 weeks before and after the heating starts and use a linear interaction 
term. Standard errors clustered at the DSP location level are reported below the coefficients. * 
significant at 10% ** significant at 5% *** significant at 1%. 
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Table 3. The Impacts of the AQI on Weekly Mortality (Log)   
    (1) (2) (3) (4) 
Panel A. IV Estimates     
 AQI (per 10 points) 0.92** 1.49*** 3.94*** 3.80*** 
   (0.42) (0.55) (1.17) (1.06) 
      
Panel B. OLS Estimates    
 AQI (per 10 points) 1.35*** 0.53*** 0.21 0.55** 
   (0.13) (0.11) (0.21) (0.27) 
 Weather Controls N Y N Y 
 DSP Fixed Effects Y Y Y Y 
 Polynomial Function Cubic Cubic Linear Linear 
 Observations 3,336 3,336 556 556 
  Sample ± 12 weeks ± 12 weeks ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. In Panel A, we report the 2SLS 
IV estimates using "heating-on" as the instrumental variable. In Panel B, we report OLS 
estimates of the association between the AQI and weekly mortality. The results in columns 
(1)-(2) include a cubic polynomial in weeks before/after the cutoff interacted with the 
"heating-on" dummy. The results in columns (3)-(4) include an interaction between weeks 
before/after the cutoff and the "heating-on" dummy. Standard errors clustered at the DSP 
location level are reported below the coefficients. * significant at 10% ** significant at 5% 
*** significant at 1%. 
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Table 4. The Impacts of the AQI on Mortality: Placebo Results 
  IV Estimates per 10 points change in AQI 
    (1) (2) (3) (4) 

Panel A. Placebo Tests using Fake Winter Heating    
 IV: 3 Weeks before Actual Cutoff 0.98 1.33 0.76 4.93 
  (2.17) (2.53) (1.04) (3.29) 
 IV: 2 Weeks before Actual Cutoff -0.98 -0.91 -1.69* -4.47 
  (0.68) (0.87) (1.02) (9.21) 
 IV: 1 Week before Actual Cutoff -5.26 13.17 - - 
  (4.88) (32.87)   
 IV: Actual Cutoff 0.92** 1.49*** 3.94*** 3.80*** 
  (0.42) (0.55) (1.17) (1.06) 
 IV: 1 Week after Actual Cutoff 0.34 0.57 - - 
  (0.80) (1.02)   
 IV: 2 Weeks after Actual Cutoff -3.01* -3.91 -7.12** -11.68 
  (1.72) (2.73) (2.92) (7.12) 
 IV: 3 Weeks after Actual Cutoff 1.33 1.82 5.93** 31.15 
  (0.95) (1.21) (2.56) (36.35) 
      
Panel B. A Placebo Test using Southern Cities    
 Fake Cutoff 0.97 0.82 0.83 2.52 
 (Nov. 15 for all Southern Cities) (0.69) (0.55) (1.02) (1.78) 
      
 Weather Controls N Y N Y 
 DSP Fixed Effects Y Y Y Y 
 Polynomial Function Cubic Cubic Linear Linear 

  Sample 
± 12 

weeks 
± 12 

weeks 
± 2 

weeks 
± 2 

weeks 
Notes: The table presents two placebo tests of IV estimates of AQI effect on mortality. Panel 
A reports the 2SLS IV estimates using "heating-on" as the instrumental variable at 
discontinuities at one week shifts from the actual "Heating-on" week.  Panel B reports the 
2SLS IV estimates using 137 southern cities and counties where no winter heating is provided. 
The fake "Heating-on" date is set on Nov. 15th. Standard errors clustered at the monitoring 
DSP level are reported below the coefficients. * significant at 10% ** significant at 5% *** 
significant at 1%. 
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Table 5. Assessing the Validity of the Identification: The Impacts of the AQI on Weekly Mortality (Log)   

  OLS Estimates  IV Estimates 
    (1) (2) (3) (4)   (5) (6) (7) (8) 

Panel A. Estimates with/without DSP Fixed Effects       
 AQI (per 10 points) 1.23*** 0.53*** 1.04*** 0.55**  1.12** 1.49*** 4.32*** 3.80*** 
   (0.27) (0.11) (0.39) (0.27)   (0.56) (0.55) (1.28) (1.06) 
 Weather Controls Y Y Y Y  Y Y Y Y 
 DSP Fixed Effects N Y N Y  N Y N Y 
 Observations 3,336 3,336 556 556  3,336 3,336 556 556 

  Sample ± 12 weeks ± 12 weeks 
± 2 

weeks 
± 2 

weeks   ± 12 weeks ± 12 weeks 
± 2 

weeks ± 2 weeks 

Panel B. Estimates with Different Weather Controls       
 AQI (per 10 points) 0.21 0.55** 0.51* 0.54**  3.94*** 3.80*** 3.79*** 4.01*** 
   (0.21) (0.27) (0.27) (0.27)   (1.17) (1.06) (1.20) (1.25) 
 Weather Controls None Linear Quadratic Cubic  None Linear Quadratic Cubic 
 DSP Fixed Effects Y Y Y Y  Y Y Y Y 
 Observations 556 556 556 556  556 556 556 556 

  Sample ± 2 weeks ± 2 weeks 
± 2 

weeks 
± 2 

weeks   ± 2 weeks ± 2 weeks 
± 2 

weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. In Panel A, we show results with and without DSP location fixed 
effects. In Panel B, we show results with different orders of weather controls. In columns (1)-(4), we report OLS estimates of the 
association between the AQI and weekly mortality. In columns (5)-(8), we report the 2SLS IV estimates using "heating-on" as the 
instrumental variable. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table 6. RD and 2SLS Estimates by Cause of Death   

  Global Polynomial  Local Linear 
  (1) (2)   (3) (4) 

Panel A: RD Estimates of Winter Heating on Mortality 
 Cardiorespiratory (per 100,000, log) 0.08** 0.09***  0.14*** 0.14*** 
  (0.03) (0.03)  (0.04) (0.04) 

 
Non-Cardiorespiratory  

(per 100,000, log) 0.03 0.04  0.09* 0.09* 
  (0.04) (0.04)  (0.05) (0.05) 
       
Panel B: 2SLS Estimates of AQI (10-point) on Mortality    
 Cardiorespiratory (per 100,000, log) 1.06** 1.68***  4.05*** 3.89*** 
  (0.46) (0.60)  (1.28) (1.15) 

 
Non-Cardiorespiratory  

(per 100,000, log) 0.41 0.72  2.55* 2.48* 
  (0.56) (0.74)  (1.52) (1.45) 
       
 Weather Controls N Y  N Y 
 DSP Fixed Effects Y Y  Y Y 
 Polynomial Function Cubic Cubic  Linear Linear 
 Observations 3,336 3,336  556 556 
  Sample ± 12 weeks ± 12 weeks  ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. In Panel A, we report OLS 
estimates of the coefficient on a "heating-on" dummy after controlling for polynomial 
functions in weeks before/after the cutoff interacted with a "heating-on" dummy. In Panel B, 
we report the 2SLS estimates of the AQI on mortality using "heating-on" as the instrumental 
variable. In columns (1) and (2), we include 12 weeks before and after the heating starts. In 
columns (3) and (4), only 2 weeks before and after the heating starts are included in the 
sample. Standard errors clustered at the DSP location level are reported below the coefficients. 
* significant at 10% ** significant at 5% *** significant at 1%. 
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Table 7. Heterogeneous Impacts of Winter Heating on Mortality   

   Global Polynomial  Local Linear 
    (1) (2)   (3) (4) 

Panel A: By Region      
 Urban areas 0.01 0.02  0.05 0.05 
  (0.03) (0.04)  (0.05) (0.05) 
 Rural areas 0.11** 0.14***  0.21*** 0.21*** 
  (0.04) (0.04)  (0.05) (0.05) 
Panel B. By GDP per capita     
 0-33.3% 0.13** 0.17***  0.28*** 0.28*** 
 (<35,000 CNY) (0.06) (0.06)  (0.06) (0.06) 
 33.3-66.7% 0.09 0.11**  0.12 0.11 
 (35,000–67,000 CNY) (0.06) (0.05)  (0.08) (0.09) 
 66.7-100% -0.01 -0.00  0.04 0.05 
 (>67,000 CNY) (0.03) (0.03)  (0.04) (0.04) 
       
Panel C: By Gender      
 Male 0.08** 0.09**  0.16*** 0.16*** 
  (0.04) (0.04)  (0.05) (0.05) 
 Female 0.05 0.07  0.11 0.10 
  (0.05) (0.05)  (0.07) (0.07) 
Panel D: By Age Group     
 Young People (<60) 0.01 0.02  0.01 0.01 
  (0.02) (0.02)  (0.03) (0.03) 
 Old People (>=60) 0.07*** 0.09***  0.10*** 0.09*** 
    (0.02) (0.02)   (0.03) (0.03) 
       
 Weather Controls N Y  N Y 
 DSP Fixed Effects Y Y  Y Y 
 Polynomial Function Cubic Cubic  Linear Linear 
  Sample ± 12 weeks ± 12 weeks   ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the 
coefficient on a "heating-on" dummy after controlling for polynomial functions in weeks 
before/after the cutoff interacted with a "heating-on" dummy. Standard errors clustered at the 
monitoring DSP level are reported below the coefficients. Panel A compares rural with urban 
areas. Panel B examines locations with different income levels. Panel C estimates the impacts 
for males and females separately. Panel D explores heterogeneous impacts across age groups. 
* significant at 10% ** significant at 5% *** significant at 1%. 
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Table 8. Heterogeneous Impacts of AQI (10 points) on Weekly Mortality 

  Models 
    (1) (2) (3) (4) 

Panel A: By Region     
 Urban areas 0.17 0.40 1.36 1.30 
  (0.60) (0.79) (1.47) (1.47) 
 Rural areas 1.35** 2.18*** 6.05*** 5.86*** 
  (0.57) (0.72) (1.88) (1.51) 
Panel B. by GDP per capita    
 0-33.3% 1.53* 2.59*** 7.37*** 5.31*** 
 (<35,000 CNY) (0.78) (0.98) (2.52) (1.38) 
 33.3-66.7% 1.19 2.28** 3.53 4.50 
 (35,000–67,000 CNY) (0.78) (1.15) (2.46) (3.50) 
 66.7-100% -0.21 -0.09 1.18 1.17 
 (>67,000 CNY) (0.59) (0.65) (1.16) (0.96) 
      
Panel C: By Gender     
 Male 1.11* 1.68** 4.63*** 4.54*** 
  (0.58) (0.77) (1.55) (1.46) 
 Female 0.72 1.29 3.05 2.82 
  (0.70) (0.92) (1.98) (1.87) 
Panel D: By Age Group     
 Young People (<60) -0.03 0.07 1.36 1.29 
  (0.52) (0.61) (1.16) (0.97) 
 Old People (>=60) 1.38*** 1.85*** 3.23*** 2.61*** 
    (0.44) (0.51) (0.98) (0.82) 
      
 Weather Controls N Y N Y 
 DSP Fixed Effects Y Y Y Y 
 Polynomial Function Cubic Cubic Linear Linear 
  Sample ± 12 weeks ± 12 weeks ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression.  We report the 2SLS IV 
estimates using "heating-on" as the instrumental variable. Panel A compares rural with urban 
areas. Panel B examines locations with different income levels. Panel C estimates the impacts 
for males and females separately. Panel D explores heterogeneous impacts across age groups. 
Standard errors clustered at the DSP location level are reported below the coefficients. * 
significant at 10% ** significant at 5% *** significant at 1%. 
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Table 9. The Impacts of PM2.5 on Mortality    
 2SLS IV Estimates  
 (1) (2) (3) (4)  
 Weekly Mortality (% Change)  

PM2.5 (per 10 µg/m3) 0.94** 1.56*** 4.09*** 3.90***  
 (0.43) (0.57) (1.24) (1.10)  

 Cardiorespiratory Mortality (% Change)  

PM2.5 (per 10 µg/m3) 1.08** 1.76*** 4.21*** 3.99***  

  
(0.47) (0.62) (1.34) (1.18) 

 
 Non-Cardiorespiratory Mortality (% Change)  

PM2.5 (per 10 µg/m3) 0.42 0.75 2.65* 2.55*  

 
(0.57) (0.77) (1.59) (1.50) 

 
      
Weather Controls N Y N Y  
DSP Fixed Effects Y Y Y Y  
Polynomial Function Cubic Cubic Linear Linear  
Observations 3,336 3,336 556 556  
Sample ± 12 weeks ± 12 weeks ± 2 weeks ± 2 weeks  
Notes: Each cell in the table is a 2SLS IV estimates using "heating-on" as the instrumental 
variable. In columns (1) and (2), we report global polynomial RD estimates. In columns (3) 
and (4), we report the local linear RD estimates. Standard errors clustered at the monitoring 
DSP level are reported below the coefficients. * significant at 10% ** significant at 5% *** 
significant at 1%. 
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Table 10. Comparisons with Selected Studies of Short-term Effects of PM2.5 on Mortality 

 Study Country Period Method Effects 

 

Shang et al. (2013) China 2004-08 Meta Analysis A 10-μg/m3 increase in PM2.5 concentrations associated 
with a 0.5% increase in respiratory mortality and a 0.4% 
increase in cardiovascular mortality. 

 

Zhou et al. (2015) China 2013 Multi-City Time-
Series 

A 10-μg/m3 increase in two-day average PM2.5 
concentrations associated with a 0.6-0.9% increase in all-
cause mortality in rural China. 

 

Franklin et al. (2008) USA 2000-05 Hierarchical Model A 1.21% increase in all-cause mortality associated with a 
10-μg/m3 increase in previous day's PM2.5 concentrations. 
Composition of PM2.5 helps explain the association. 

 

Kloog et a. (2015) USA 2000-08 Time-Series For every 10-μg/m3 increase in PM2.5 exposure, PM-
related mortality increases by 2.8%. 

 

Atkinson et al. (2014) World - Meta Analysis A 10-μg/m3 increment in PM2.5 associated a 1.04% 
increase in the risk of death. Substantial regional variation 
observed around the globe. 
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Table 11. Estimated Benefit of Replacing Coal with Natural Gas For Winter Heating   
  Effect Size Source Calculation Value 
Pane A. Short-term benefit    

 

Pre-mature Deaths  A 10-point increase in 
the AQI would cause a 
3.8% increase in 
weekly mortality. 

Self-calculation VSL (2.92 million yuan) * 30% 
(discounting the VSL of the elderly) 
*144,000 premature deaths = 126 billion 
yuan 

20 billion 
USD   

 

Defensive 
Expenditure   

A northern household 
is willing to pay about 
43 USD per year to 
clean the air. 

Ito and Zhang, 
2016 

43 USD per year * 1/4 (for winter 
season) * northern Chinese population = 
2.65 billion USD 

2.65 billion 
USD 

 

Medical 
Expenditure   

A reduction of 10 
µg/m3 in PM2.5 would 
lead to total annual 
savings of 11.7 billion 
USD. 

Jia et al. 2017 11.7 billion USD * 1/4 (winter season) * 
PM2.5 difference between northern and 
southern China during the winther = 4.2 
billion USD 

4.2 billion 
USD 

 Total    26.85 billion 
USD 

Panel B. Long-Term Benefit    

  

Life Expectancy  Winter heating casues a 
3.1 years losss in life 
expectancy for Nothern 
Chinese people 

Ebenstein et al. 
2017 

 Life years will be saved each year: 3.1 
Years/76 Years * northern population = 
24.2 million years; Each life year worth: 
5.27 million yuan/76 years = 69.3 
thousand yuan/year; Total benefit: 24.2 
million * 69.3 thousand = 1,696 billion 
yuan/year 

266 billion 
USD 
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Figure 1 
Distribution of DSP Locations and Air Pollution Monitor Stations 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Notes: The red triangles are the DSP locations. Cities north of the solid line are covered by the 
winter heating policy. The blue dots are the locations of the air pollution monitor stations.  
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Figure 2        
The AQI Before and After Winter Heating Starts  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Notes:  Each observation (square) is generated by averaging AQI across the DSP locations 
within a week. The plotted line reports a third order polynomial estimated separately on 
each side of the cutoff.   
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Figure 3       
Adjusted Mortality Rate (log) Before and After Winter Heating Starts 
 
 
 

      
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
Notes:  Each observation (square) is generated by averaging weekly mortality rate across the 
DSP locations. The plotted line reports a third order polynomial estimated separately on each 
side of the cutoff.   
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Figure 4 
Rural vs Urban Comparison  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
Notes:  Each observation (square) is generated by averaging weekly mortality rate across the DSP locations. The 
plotted line reports a third order polynomial estimated separately on each side of the cutoff.   
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Figure 5       
Weather Controls Before and After Winter Heating Starts  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes:  Each observation (square) is generated by averaging weekly mortality rate across the 
DSP locations. The plotted line reports a third order polynomial estimated separately on each 
side of the cutoff.   
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Online Appendix 
Winter Heating, Air Quality, and Mortality in China 

 
A1. Disease Surveillance Point System 
Our sample of mortality in China is taken from the Disease Surveillance Points System (DSPS) 
administered by the Chinese Center for Disease Control and Prevention (China CDC). The system 
started in the late 1970s and was designed to monitor the health status of Chinese people in selected 
cities and counties because a mortality registration system for all 1.3 billion people was infeasible. 
In 1990, the system was expanded to 145 DSPs in 31 provinces, based on random sampling to 
represent the whole population of China. In the early 2000s, the DSPS was overhauled and a new 
set of 161 DSPs were included in the system starting in 2003. The data quality since 2003 
represents a significant improvement in data quality relative to earlier data collected by the DSP 
during the 1980s and 1990s. In 2013, the Chinese government decided to increase the DSP 
locations from 161 to 605 to cover a population of 324 million people.  

Information on all deaths in the designated DSP locations is collected and reported to the DSPS. 
If the patient died in a health facility, there is a standard protocol for death registration and 
reporting. If the patient died at home, the attending doctor (e.g. a community doctor) will follow a 
standard procedure to fill out a death certificate and report the information to the DSPS. All 
reported death information is subject to strict quality control procedures for accuracy and 
completeness. We use 2014-2015 data made available to the research team for this project. 
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A2. Air Quality Index 
Air quality index (AQI) is a quantitative description of the air quality. It tells the public how 
polluted their air is, and what associated health effects might be a concern for them. The major 
pollutants involved in the analysis includes fine particulate matter (PM2.5), inhalable particles 
(PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO). All 
pollutants are measured in micrograms per cubic meter (μg/m3).  

 
Appendix A2 - Table I. The Thresholds of Individual Air Quality Index 
IAQI Thresholds of Individual Pollutant 

SO2 
24-hour 
Average 
(μg/m3) 

SO2 
1-hour 

Average 
(μg/m3) 

NO2 
24-hour 
Average 
(μg/m3) 

NO2 
1-hour 

Average 
(μg/m3) 

PM10 
24-hour 
Average 
(μg/m3) 

CO 
24-hour 
Average 
(μg/m3) 

CO 1-
hour 

Average 
(μg/m3) 

O3 
1-hour 

Average 
(μg/m3) 

O3 
8-hour 

Average 
(μg/m3) 

PM2.5 
24-hour 
Average 
(μg/m3) 

0 0 0 0 0 0 0 0 0 0 0 
50 50 150 40 100 50 2 5 160 100 35 
100 150 500 80 200 150 4 10 200 160 75 
150 475 650 180 700 250 14 35 300 215 115 
200 800 800 280 1 200 350 24 60 400 265 150 
300 1600 - 565 2 340 420 36 90 800 800 250 
400 2100 - 750 3 090 500 48 120 1 000 - 350 
500 2620 - 940 3 840 600 60 150 1 200 - 5ool 
 
 The scale of AQI for an individual air pollutant is from 0 to 500. The goal is to convert the 

pollution concentrations into a number between 0 and 500. There are eight thresholds, 0, 20, 100, 
150, 200, 300, 400, and 500. Each threshold corresponds to a defined pollution concentration. The 
pollution concentration between the thresholds is linearly interpolated using the following 
equation:  

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿
𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻 − 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿

(𝐶𝐶𝑃𝑃 − 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿 

where 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃: individual air quality index for pollutant P. 
𝐶𝐶𝑃𝑃: the rounded concentration of pollutant P  
𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻: the threshold greater than or equal to 𝐶𝐶𝑃𝑃 
𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿: the threshold less than or equal to 𝐶𝐶𝑃𝑃 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻: the AQI corresponding to 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿: the AQI corresponding to 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 
 
The index 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃  has a linear relationship with the concentration Cp, with 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿

𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻−𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿
 as the 

slope. 
The AQI is determined by the pollutant with the highest index. The pollutant with the 

maximum individual air quality index (IAQI) is primary pollutant when AQI is greater than 50.   
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼3, … , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛} 
 
For example, if the PM2.5 AQI is 125, the PM10 AQI is 50, SO2 is 30, NOx is 50, and all other 
pollutants are less than 125, then the AQI is 125–determined ONLY by the concentration of 
PM2.5.  
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The AQI focuses on health effects one may experience within a few hours or days after 
breathing polluted air. The AQI is divided into six levels in total, with Level one being the best 
and Level six being the worst.  

 
Appendix A2 - Table II. AQI and Health Implications 

AQI Air Quality Health Implications 

0–50 Excellent No air pollution. 

51–100 Good Few hypersensitive individuals should reduce the time for outdoor activities. 
101–150 Lightly 

Polluted 
Slight irritations may occur, children, and those who with breathing or heart problems should 

reduce outdoor exercise. 
151–200 Moderately 

Polluted 
Irritations may occur, and it may have an impact on healthy people’s heart and / or respiratory 

system, so all people should reduce the time for outdoor exercise. 
201–300 Heavily 

Polluted 
Healthy people will be noticeably affected. People with breathing or heart problems will lack 

exercise tolerance. Those patients, children and elders should remain indoors. 
300+ Severely 

Polluted 
Even healthy people will lack endurance during activities. There may be strong irritations and 

symptoms. So all people should avoid outdoor activities. 
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Table A1. RD Estimates on AQI with Different Orders of Polynomial         
 Models 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Heating On 11.17*** 25.37*** 21.38*** 15.31*** 71.29*** 55.90*** 73.94*** 68.00*** 
 (2.43) (2.54) (3.96) (3.42) (8.04) (6.46) (9.53) (7.77) 
         
Weather Controls N Y N Y N Y N Y 
DSP Fixed Effects Y Y Y Y Y Y Y Y 
Polynomial Function Linear Linear Quadratic Quadratic Cubic Cubic Quartic Quartic 
R-Squared 0.55 0.61 0.55 0.61 0.59 0.63 0.59 0.63 
AIC 33177 32749 33167 32729 32931 32566 32932 32549 
BIC 33195 32786 33198 32778 32974 32627 32987 32623 
Obs. 3,336 3,336 3,336 3,336 3,336 3,336 3,336 3,336 
Sample ± 12 weeks ± 12 weeks ± 12 weeks ± 12 weeks ± 12 weeks ± 12 weeks ± 12 weeks ± 12 weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the coefficient on a "heating-on" dummy 
after controlling for polynomial functions in weeks before/after the cutoff date interacted with a "heating-on" dummy. We include 
12 weeks before and after the heating starts in the sample. Standard errors clustered at the DSP location level are reported below the 
coefficients. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table A2.  Global Polynomial RD Estimates and IV Estimates for Different Length of Weeks 
  Different Samples 
  ± 10 weeks ± 11 weeks ± 12 weeks ± 13 weeks ± 14 weeks ± 15 weeks ± 16 weeks 
    (1) (2) (3) (4) (5) (6) (7) 
Panel A: RD Estimates of Winter Heating on AQI      
 Heating On 68.36*** 63.01*** 55.90*** 52.27*** 39.09*** 34.65*** 31.56*** 
  (7.16) (6.85) (6.46) (6.06) (5.15) (5.07) (5.16) 
 R-Squared 0.65 0.63 0.63 0.62 0.61 0.61 0.60 
         
Panel B: RD Estimates of Winter Heating on Mortality (log)     
 Heating On 0.06** 0.09*** 0.08*** 0.10*** 0.09*** 0.08*** 0.05** 
  (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 
 R-Squared 0.47 0.46 0.45 0.45 0.45 0.44 0.44 
         
Panel C: IV Estimates of AQI on Mortality (log)       
 AQI (per 10 points) 0.91** 1.44*** 1.49*** 1.85*** 2.28*** 2.30*** 1.69* 
  (0.41) (0.45) (0.55) (0.59) (0.74) (0.81) (0.88) 
         
 Weather Controls Y Y Y Y Y Y Y 
 DSP Fixed Effects Y Y Y Y Y Y Y 
 Polynomial Function Cubic Cubic Cubic Cubic Cubic Cubic Cubic 
  Observations 2,780 3,058 3,336 3,614 3,892 4,170 4,446 
Notes: The table reports OLS estimates of the coefficient on the "heating-on" dummy and the 2SLS IV estimates for different 
sample periods after controlling for polynomial functions in weeks before/after the cutoff interacted with a "heating-on" 
dummy. The sample size increases gradually from left to right. Column (3) is corresponding to column (2) in Table 2. 
Standard errors clustered at the DSP location level are reported below the coefficients. * significant at 10% ** significant at 
5% *** significant at 1%. 
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Table A3. Global Polynomial RD Estimates and IV Estimates for Different Tolerance Distances 
  Different Tolerance Distances   
  50KM 75KM 100KM 125KM 150KM 175KM 200KM Weighted Distance 
    (1) (2) (3) (4) (5) (6) (7) (8) 
Panel A: RD Estimates of Winter Heating on AQI       
 Heating On 64.29*** 60.55*** 55.90*** 52.10*** 48.02*** 47.00*** 44.99*** 47.67*** 
  (8.12) (7.60) (6.46) (6.09) (5.56) (5.34) (5.24) (5.76) 
 R-Squared 0.62 0.63 0.63 0.63 0.63 0.62 0.62 0.63 
 Polynomial Function Cubic Cubic Cubic Cubic Cubic Cubic Cubic Cubic 
          
Panel B: RD Estimates of Winter Heating on Mortality (log)      
 Heating On 0.08** 0.07** 0.08*** 0.07*** 0.07*** 0.07*** 0.06** 0.08*** 
  (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) 
 R-Squared 0.50 0.49 0.45 0.44 0.42 0.43 0.41 0.44 
 Polynomial Function Cubic Cubic Cubic Cubic Cubic Cubic Cubic Cubic 
          
Panel C: IV Estimates of AQI on Mortality (log)        
 AQI (per 10 points) 1.23** 1.23** 1.49*** 1.38*** 1.55*** 1.39*** 1.27** 1.67*** 
  (0.55) (0.54) (0.55) (0.52) (0.53) (0.50) (0.50) (0.56) 
          
 Weather Controls Y Y Y Y Y Y Y Y 
 DSP Fixed Effects Y Y Y Y Y Y Y Y 
  Observations 1,824 2,640 3,336 4,008 4,728 5,184 5,424 4,344 
Notes: In the table we keep DSP locations sufficiently close to a monitoring station and drop others from the sample. For example, 
in column (1), any DSP location within 50 kilometers of a station is assigned the value at the closest station. We report OLS 
estimates of the coefficient on a "heating-on" dummy and the 2SLS IV estimates after controlling for polynomial functions in weeks 
before/after the cutoff interacted with a "heating-on" dummy. Standard errors clustered at the monitoring DSP level are reported 
below the coefficients. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table A4. Local Linear RD Estimates and IV Estimates for Different Tolerance Distances 
  Different Tolerance Distances   
  50KM 75KM 100KM 125KM 150KM 175KM 200KM Weighted Distance 
    (1) (2) (3) (4) (5) (6) (7) (8) 
Panel A: RD Estimates of Winter Heating on AQI       
 Heating On 47.75*** 39.46*** 35.97*** 32.45*** 28.96*** 28.67*** 26.74*** 29.66*** 
  (7.28) (6.67) (5.89) (5.68) (5.19) (5.01) (4.92) (5.38) 
 R-Squared 0.77 0.77 0.76 0.75 0.74 0.72 0.73 0.74 
          
Panel B: RD Estimates of Winter Heating on Mortality (log)      
 Heating On 0.11*** 0.12*** 0.14*** 0.14*** 0.13*** 0.11*** 0.11*** 0.13*** 
  (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) 
 R-Squared 0.77 0.74 0.70 0.68 0.68 0.67 0.68 0.68 
          
Panel C: IV Estimates of AQI on Mortality (log)        
 AQI (per 10 points) 2.37*** 3.05*** 3.80*** 4.28*** 4.51*** 3.74*** 4.29*** 4.48*** 
  (0.88) (0.99) (1.06) (1.11) (1.20) (1.13) (1.25) (1.21) 
          
 Weather Controls Y Y Y Y Y Y Y Y 
 DSP Fixed Effects Y Y Y Y Y Y Y Y 
  Observations 304 440 556 668 788 864 904 724 
Notes: In the table we keep DSP locations sufficiently close to a monitoring station and drop others from the sample. For example, in 
column (1), any DSP location within 50 kilometers of a station is assigned the value at the closest station. We report OLS estimates of 
the coefficient on a "heating-on" dummy after controlling for polynomial functions in weeks before/after the cutoff date interacted with 
a "heating-on" dummy. Standard errors clustered at the monitoring DSP level are reported below the coefficients. * significant at 10% 
** significant at 5% *** significant at 1%. 
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Table A5. RD Estimates of the Impacts of  Winter Heating Excluding Beijing 
   Global Polynomial  Local Linear 
    (1) (2)   (3) (4) 
Panel A: RD Estimates of Winter Heating on AQI    
 Heating On 65.29*** 52.16***  30.53*** 33.52*** 
  (8.12) (6.66)  (5.89) (6.09) 
 R-Squared 0.60 0.64  0.61 0.76 
       
Panel B: RD Estimates of Winter Heating on Mortality (log)  
 Heating On 0.07** 0.09***  0.15*** 0.14*** 
  (0.03) (0.03)  (0.04) (0.04) 
 R-Squared 0.44 0.44  0.69 0.70 
       

Panel C: IV Estimates of AQI on Mortality (log)     

 AQI (per 10 points) 1.08** 1.65***  4.78*** 4.32*** 
  (0.49) (0.61)  (1.45) (1.23) 
       
 Weather Controls N Y  N Y 
 DSP Fixed Effects Y Y  Y Y 
 Polynomial Function Cubic Cubic  - - 
 Observations 3,168 3,168  528 528 
  Sample ± 12 weeks ± 12 weeks   ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the 
coefficient on a "heating-on" dummy after controlling for polynomial functions in weeks 
before/after the cutoff date interacted with a "heating-on" dummy in columns (1)-(2). In 
columns (3)-(4), we include 2 weeks before and after the heating starts and use a linear 
interaction term. Standard errors clustered at the DSP location level are reported below the 
coefficients. * significant at 10% ** significant at 5% *** significant at 1%. 



52 
 

Table A6. Heterogeneous Impacts of Winter Heating on AQI     
  Models 
    (1) (2) (3) (4) 
Panel A: By Region     
 Urban areas 57.54*** 45.45*** 35.17*** 35.67*** 
  (11.81) (9.82) (9.09) (9.57) 
 Rural areas 82.36*** 63.59*** 34.54*** 35.86*** 
  (10.90) (8.48) (7.77) (7.32) 
Panel B. By GDP per capita     
 0-33.3% 87.52*** 65.84*** 37.88*** 53.06*** 
 (<35,000 CNY) (15.71) (11.81) (10.09) (8.80) 
 33.3-66.7% 75.53*** 48.99*** 34.80*** 24.62** 
 (35,000–67,000 CNY) (14.74) (11.13) (10.91) (11.57) 
 66.7-100% 54.63*** 50.86*** 33.50*** 42.71*** 
 (>67,000 CNY) (13.36) (11.53) (11.62) (12.31) 
            
 Weather Controls N Y N Y 
 DSP Fixed Effects Y Y Y Y 
 Polynomial Function Cubic Cubic Linear Linear 
  Sample ± 12 weeks ± 12 weeks ± 2 weeks ± 2 weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the 
coefficient on a "heating-on" dummy after controlling for polynomial functions in weeks 
before/after the cutoff date interacted with a "heating-on" dummy. Standard errors clustered at the 
monitoring DSP level are reported below the coefficients. Panel A compares rural with urban areas. 
Panel B examines locations with different income levels. * significant at 10% ** significant at 5% 
*** significant at 1%. 
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Table A7. Urban vs. Rural          
  RD   2SLS 

 Global Polynomial   Local Linear  Global Polynomial   Local Linear 
 Urban Rural  Urban Rural  Urban Rural  Urban Rural 

  (1) (2)   (3) (4)  (5) (6)   (7) (8) 
 By Sex  By Sex 

Male 0.01 0.16**  0.07 0.24***  0.26 2.53**  2.08 6.63*** 
 (0.05) (0.06)  (0.07) (0.06)  (0.99) (1.09)  (2.06) (2.09) 

Female 0.04 0.11  0.02 0.16  0.82 1.67  0.64 4.51* 
 (0.07) (0.08)  (0.10) (0.10)  (1.47) (1.16)  (2.67) (2.64) 

  By Age  By Age 
Young -0.00 0.02  0.02 0.08*  -0.02 0.47  0.39 2.25 

 (0.03) (0.04)  (0.05) (0.05)  (0.80) (0.79)  (1.23) (1.38) 
Old 0.04 0.12***  0.04 0.13***  1.09 2.38***  1.06 3.85*** 

 (0.03) (0.03)  (0.04) (0.04)  (0.68) (0.67)  (1.14) (1.09) 
            

Weather Controls Y Y   Y Y   Y Y   Y Y 
DSP Fixed Effects Y Y  Y Y  Y Y  Y Y 
Polynomial 
Function Cubic Cubic  Linear Linear  Cubic Cubic  Linear Linear 

Sample 
± 12 

weeks 
± 12 

weeks   
± 2 

weeks 
± 2 

weeks   
± 12 

weeks 
± 12 

weeks   
± 2 

weeks 
± 2 

weeks 
Notes: Each cell in the table represents a separate regression. We report OLS estimates of the coefficient on a "heating-on" dummy 
after controlling for polynomial functions in weeks before/after the cutoff week interacted with a "heating-on" dummy. Standard 
errors clustered at the monitoring DSP level are reported below the coefficients. * significant at 10% ** significant at 5% *** 
significant at 1%. 
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