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1 Introduction

Measurement of the income inequality to evaluate social welfare is of particular interest to

economists and policy makers. Since the size distribution of income is the basis of such

inequality measures, correct specification of the income density function is of utmost impor-

tance. There is a very long history of research on models for the size distribution of income:

Pareto (1895, 1896, 1897) formulated the“laws”of personal income after observing that a plot

of the logarithm of the number of people above a certain level of income against the logarithm

of that level has almost a linear representation with a negative slope. Since then there had

been numerous developments in formulating various income density functions and measuring

income inequality. Aitchison and Brown (1957) advocated the use of the log-normal density

to describe the income distribution, whereas Salem and Mount (1974) suggested using the

gamma distribution. Empirical evidences accumulated over a long period of time show that

the log-normal and gamma distributions fit the data relatively well in the middle range of

income but tend to exaggerate the skewness and fit poorly toward the tails, see for instance,

Gastwirth (1972), Kloek and van Dijk (1977, 1978), McDonald and Ransom (1979), Dagum

(1977), Ransom and Cramer (1983), and McDonald (1984).

Subsequently, many more models for income distributions have been proposed. Among

parametric densities, along with the log-normal and gamma, Singh and Maddala (SM) (1976),

generalized gamma (GG) (Kloeck and van Dijk, 1978) and generalized beta of the first (GB1)

and -second kind (GB2) (McDonald, 1984) are most popular. Many well-known density func-

tions such as exponential, Weibull, Fisk, the beta of the first and -second kinds, log-normal,

gamma and SM, are special cases of GG, GB1 and GB2. Kleiber and Kotz (2003) provides

an excellent overview of size distributions and estimation methods. The empirical results of

various studies show that GB2 outperforms other two- to four-parameter distributions in the

goodness-of-fit sense (see, McDonald, 1984; McDonald and Xu, 1995; Bordley, McDonald

and Mantrala, 1996; Dastrup, Hartshorn and McDonald, 2007). Although the density GB2

is flexible enough to take care of various types of income data, following the tradition of
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Haavelmo (1944), it is necessary to carry out analysis for any possible misspecification. Boc-

canfuso, Decaluwé and Savard (2008) found that selecting inappropriate income distribution

can yield biased results in terms of poverty analysis. If a density function is correctly speci-

fied, then, the maximum likelihood estimation preserves consistency and efficiency. However,

due to lack of complete information, the true density is rarely achieved; therefore, it is nec-

essary to subject any proposed income density function to a battery of specification tests.

In this paper, we consider a class of flexible income densities derived from optimizing a well-

defined distance measure, namely, the maximum entropy (ME) subject to certain moment

constraints. Careful choice of moment-constraints based on economic theory, past empirical

evidence and specification tests leads to an well-specified density function that is able to

extract the essential information from the data. By so doing we are, as our empirical appli-

cation demonstrates, able to arrive close to the “true” model for income distribution.

Density estimation based on minimum divergence methods, i.e., minimizing some appro-

priate distance norm between the assumed and the true densities, has been studied quite

extensively, see for instance, Kullback and Leibler (1951), Renyi (1960), Cressie and Read

(1984), and Lindsay (1994). By minimizing such distance measures subject to certain mo-

ment constraints possibly involving some unknown parameters, one can obtain a very prob-

able distribution. We consider the Kullback-Leibler information criteria with uniform refer-

ence density as the distance norm, which is nothing but the negative of Shannon’s (1948)

entropy measure (SEM). A ME density (MED) is obtained by maximizing SEM subject to

certain moment constraints which can be regarded as “prior” information. By choosing dif-

ferent sequences of moment constraint functionals, we have various flexible MED functions

belonging to a generalized exponential family. MED is known to be the least biased distri-

bution given known moment constraints (Kapur and Kesavan (1992)).

Although we consider only parametric family, one can also adapt non-parametric ap-

proaches to estimate income distribution. For the non-parametric density, however, the

estimated tail-behavior may not be satisfactory due to the scarcity of data in the tail parts.

Minoiu and Reddy (2014) showed that the performance of the estimated non-parametric
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kernel density has nontrivial biases in estimated poverty levels and suggested to use a para-

metric income density. Furthermore, in our approach to MED estimation, we can ensure

that the Pareto law is not violated by selecting appropriate moment functions.

Although parametric approaches have such advantages, we should be very careful in se-

lecting specific density that takes care of some kind of stable structure of personal income

data. One can almost always construct a flexible density having higher goodness-of-fit mea-

sure than that of all previously considered models. Finding a parsimonious density that

obeys the Pareto law and other stylized facts is always a challenge. Esteban (1986) showed

that the GG is the only density function that satisfies three stylized facts, i.e., (i) the weak

Pareto law; (ii) possessing at least one interior mode; (iii) a constant rate of decline of the

income-share elasticities. Majumder and Chakravarty (1990) proposed a 4-parameter income

density function satisfying conditions (i) and (iii) above. McDonald and Mantrala (1995)

showed that Majumder and Chakravarty (1990)’s density function is a reparameterized ver-

sion of GB2. We demonstrate that by choosing appropriate moment functions, stylized facts

and constraints implied by economic theory can be incorporated into the estimated density

in a parsimonious way.

Standard MED models used in the literature are based on the power series or some or-

thonormal series as the moment functions. One exception is Leipnik (1990) that considered

general moment functions based on utility functions, and derived many well-known income

distributions, such as log-normal, Pareto, SM and GB2. However, since the distribution

function, F(x) itself appears in the moment function, deriving an explicit form of the MED

is quite difficult, and this methodology is hard to implement in practice. Ryu and Slottje

(1997) and Wu (2003) considered the Legendre polynomials up to 4-th order and arithmetic

moments up to 12-th order, respectively. Wu and Perloff (2005) used ln(1+ x)i, i = 1, 2, 3, 4 as

moment functions and reported that these provided the best overall fit for Chinese household

income data. Such approaches may lack economic interpretation in the sense that some of

the moment functions are used without considering stylized facts and economic implications

of the resulting density function. Furthermore, existence of higher-order arithmetic moments
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cannot always be ensured. Wu and Perloff (2007) also considered a generalized method of

moment (GMM) estimator for the distribution of a variable where summary statistics are

available only for certain intervals. However, they do not consider the characterization of

various income densities that satisfy empirical stylized facts of personal income data. We

consider moment functions that represent distributional characteristics more directly.1

The rest of the paper is organized as follows. Section 2 introduces MED under general

moment conditions and gives examples of ME income densities. In Section 3, we present

some basic characteristics of the MED in the context of modeling income distribution and

discuss which moment functions are appropriate to capture the stylized facts. In Section 4,

we discuss estimation and suggest a moment selection criteria based on Rao’s score (RS) test

principle. Section 5 provides an empirical application to the U.S. income data with specific

moment functions. The paper is concluded in Section 6.

2 ME density under general moment conditions

When prior information are available in the form of moments of unknown distribution, ME

principle recovers the distribution without using any further information but only those

moments. This principle has been used in the construction of the prior density functions

in the Bayesian literature (Zellner (1977) and Berger (1985, pp. 90-94)). Simple moment

conditions usually take form of E[φ(x)] =
∫

φ(x) f (x)dx = µ, where φ(·) and µ are, respec-

tively, a vector valued function and a given constant vector. We propose using generalized

moments where the function φ(·) also involves an additional unknown parameter vector γ,

i.e., E[φ(x, γ)] = C(γ). The generalized MED is obtained by maximizing Shannon’s (1948)

entropy measure

H( f ) = −
∫

f (x) ln f (x)dx, (1)

1Park and Bera (2009) demonstrated the usefulness of MED approach in finding suitable density functions

for autoregressive conditional heteroskedasticity (ARCH)-type models for financial time series data.
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subject to the constraints

∫

φ j(x, γ) f (x)dx = C j(γ), j = 0, 1, 2, · · · , q. (2)

The normalization constraint corresponds to j = 0 by setting φ0(x, γ) and C0(γ) to 1.

The solution to (1)-(2), obtained by applying the Lagrangian procedure, is the generalized

exponential density

f (x; θ) =
1
Ω(θ)

exp

















−
q
∑

j=1

λ jφ j(x, γ)

















, (3)

where Ω(θ) =
∫

exp
[

−
∑q

j=1 λ jφ j(x, γ)
]

dx, and θ = (λ′, γ′)′ with λ = (λ1, λ2, · · · , λq)′. When the

parameter vector γ is absent from φ j(x, γ) in (2), the solution (3) belongs to the exponential

family, where λ j is the Lagrange multiplier corresponding to the j-th constraint in (2) for

maximizing H( f ), j = 1, 2, · · · , q. For example, if the moment function is given by φ1(x, γ) = x

with φ0(x, γ) = 1, the resulting MED is the exponential density, i.e., f (x; λ1) = λ1e−λ1x, x ≥ 0.

With an additional moment function, φ2(x, γ) = x2, the MED is a N(µ, σ2) density with

µ = −λ1/(2λ2) and σ2
= 1/(2λ2). In the context of general exponential family, λ j can be

viewed as a natural parameter and
∑N

i φ j(xi, γ) the corresponding sufficient statistic for a

given γ, j = 1, · · · , q, where N is the sample size. The statistical characteristics of exponential

family are well-known, and therefore, it is convenient for estimation and inference. However,

in some cases, a large number of moment functions might be needed to fit the unknown

density if the simple moment functions φ j(x)’s are not flexible enough. For example, in order

to fit a fat tailed density we need high orders of the arithmetic moment functions. Having

parameter vector γ in φ j(·, ·), makes the (generalized) moment function more flexible, and

the resulting MED quite general.

Since the solution form of prescribed constrained maximization problem is exponential,

we can regard the MED estimation procedure as a non-linear “regression”model in which the

log-density and moments functions are dependent and independent variables, respectively,
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which is seen by writing (3) as

ln f (x; θ) = Const −
q
∑

j=1

λ jφ j(x, γ). (4)

Fitting a log-density might be easier than estimating a density function directly since log-

transformation generally reduces the degree of curvature of an underlying function. More-

over, the log-density can take any value in the real line, while a proper density should take

only non-negative values.

To provide an early illustration of our approach, in Figure 1 we plot three estimated log-

densities along with the empirical log-probability. The first model, f 1, is the MED based on

two moment functions, ln x and ln(1+ (x/b)a), where a and b are unknown parameters, while

only ln(1+ (x/b)a) is considered as the moment function for f 2. Finally, two simple moment

functions, ln x and (ln x)2 are used in f 3. Clearly, f 1 fits better than the other two models.

Note that the major difference between estimated f 1 and f 2 comes from the lower income

intervals. f 2 is flat in the lower income levels but achieves quite similar goodness-of-fit to

that of f 1 in the middle and higher income levels. f 3 though not flat for the lower income

level, it strays away from the histogram throughout all income levels. Therefore, we can say

that the moment functions ln x and ln(1 + (x/b)a) are informative for the higher and lower

income intervals, respectively. In fact, f 1 and f 3 are re-parameterized versions of GB2 and

log-normal distributions, respectively. Therefore, selection of appropriate and well-behaved

moment functions is critical to the construction of MED, as we elaborate in the next Section.

[Figure 1]

3 Characterization of ME income distribution

Maximum entropy distribution has a very flexible functional form. By choosing a se-

quence of moment functions φ j(x), j = 1, 2, · · · , q, we can generate a sequence of various
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flexible MED functions. Many well-known families of distributions can be obtained as spe-

cial cases of MED function. Kagan, Linnik and Rao (1973) provided characterization of

many distributions, such as, the beta, gamma, exponential and Laplace distributions as ME

densities. Gokhale (1975) presented characterization of the univariate normal, double expo-

nential and Cauchy, and the multivariate Dirichlet and Wishart distributions. Ord, Patil and

Taillie (1981) provided characterization of three typical income distributions, gamma, Pareto

and log-normal. Cobb, Koppstein and Chen (1983) obtained a general class of multimodal

density functions within a unified framework of stochastic catastrophe models. Similar to

ME principle, the system in stochastic catastrophe models behaves as if it moves towards

the points of lowest potential.

Table 1 shows the characterization of some well-known income distributions. These dis-

tributions can be interpreted in an information theoretic way that they can be obtained

by imposing moment constraints which are inherent in the data and thus the relationships

among various distributions can be seen from the underlying moment restrictions. For ex-

ample, the log-normal (LN) distribution is the resulting MED if the prescribed moment

conditions are E[ln x] = µ and E[(ln x)2] = µ2
+ σ2. Weibull and generalized gamma (GG)

are characterized by the same two moment functions φ1(x) = ln x and φ2(x, a) = xa; the re-

sulting densities are, however, not the same. This is due to the flexibility of the expected

values of the moment functions of GG can take. For Weibull case, stronger restrictions of the

constraints, E[xa] = 1 and E[ln x] = −γ/a lead to an one-parameter distribution, while the

flexible ranges of values that E[xa] and E[ln x] can take for the GG case are much wider and

that results in a three-parameter density. Similar arguments can be made for the Fisk, SM,

Dagum and GB2 distributions. We can check that the MED associated with two moment

functions, E[ln x] and E[ln(1 + (x/b)a)] is a re-parameterized version of GB2 distribution.

Clementi, Gallegati and Kaniadakis (2010) proposed κ-generalized distribution derived from

the ME principle with 3 moment functions: ln x, ln(1+κ2(x/β)2α) and sinh−1(−κ(x/β)α), where

α, β and κ are parameters of the distribution. As McDonald (1984) noted and can be easily

seen from the expression of densities given in Table 1, Fisk is a special case of SM with q = 1,
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and SM is obtained from GB2 by setting p = 1. Finally, note also that Dagum distribution

is a special case of GB2 when q = 1.

[Table 1]

Using Figure 1 we earlier noted ln x and ln(1+ (x/b)a) can capture the distributional patterns

of the lower and upper income levels, respectively. It is, therefore, worthwhile to consider

some well-behaved functions having similar behavior to the moment functions corresponding

to GB2. There are, of course, many such functions. From these, we can select those func-

tions that satisfy the weak Pareto law (WPL). In many empirical applications, the Pareto

distribution has been found to fit well toward the upper tail region. Let us define the share

of total income earned by individuals with income in the interval [x, x + h] as

ξ(x, x + h) =
1
µ

∫ x+h

x
z f (x)dz,

where f (·) is the density function, and µ =
∫ ∞

0
z f (z)dz the mean income. Esteban (1986)

showed that an income distribution can be uniquely characterized by its income share elas-

ticity function, defined by

η(x, f ) = lim
h→0

d ln ξ(x, x + h)
d ln x

= 1+
x f ′(x)
f (x)

.

Then, the density f (·) satisfies the WPL if

lim
x→∞

η(x, f ) = −α, (5)

for some α > 0. Some commonly used densities, such as lognormal and gamma, do not

satisfy WPL. The income share elasticity associated with MED in (3) is given by

η(x, f ) = 1−
















q
∑

j=1

λ jφ
′
j(x, γ)

















x. (6)

Therefore, we can easily verify whether WPL is satisfied or not by checking the boundedness

of φ′j(x, γ)x with respect to x, j = 1, 2, · · · , q.

As presented in Table 1, the well-known income densities can be characterized by a
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few moment functions, for example, x, ln x, ln(1 − x), xa and ln(1 + (x/b)a). More general

income density functions that have the similar behavior with those of the well-known income

densities, can be obtained by considering the flexible moment functions. For example, the

shapes of tan−1(x) and sinh−1(x) are quite close to those of ln x and ln(1+ x). Moreover, the

behavior of sinh−1(xa) is very similar to that of ln(1+ xa) for a > 0. Thus one can construct

a generalized income density function by incorporating more flexible moment functions.

To get more insight of various moment functions, in Figure 2 we plot four common

functions: ln x, ln(1 + x), tan−1(x) and sinh−1(x) used in the literature to generate a wide

variety of densities; the positive and negative functions are in the left and right panels,

respectively. The effect of φ j(x, γ) to the corresponding log-density depends on the Lagrange

multiplier λ j, j = 1, 2, · · · , q [see equation (4)]. If λ j < 0 then the associated moment

function can take care of the distribution at the lower income levels, where, usually, the

number of individuals increases sharply as x increases from zero. The rate of increase in

ln x is higher than that of the other three functions, and therefore, when there is sharp

increases of the number of individuals at the lower income levels, it fits this part of the log-

density well. It is not surprising that most, if not all, well-known income distributions are

characterized by the moment condition E[ln x] = c for some constant c [see Table 1]. When

λ j > 0, all corresponding moment function plays a different role and explains the middle

and upper tail of the distribution. For instance, in the restricted income range, x > x0 > 0,

E[ln x] = 1/α+ ln x0 characterizes the Pareto density, f (x : α) = αxα0/xα+1, where α > 0, which

in turn can be written as

αxα0 exp[−(α + 1) ln x] = exp[−λ ln x]/Ω(α) (say),

where since α > 0, we have λ > 0. Therefore, it is not surprising that the Pareto distribution

fits the upper tail part well but not the rest of the distribution.

[Figure 2]

Three moment functions ln(1 + x2), tan−1(x2) and sinh−1(x2) are plotted in the lower panel

of Figure 2. Comparing to plots in the upper panel of Figure 2, these moment functions
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do not increase sharply for the smaller values of x. Thus these are not appropriate to

represent distributions that have sharp increases at the lower income level. Instead, if the

Lagrange multiplier is positive (negative moment functions), these functions can take care of

the middle and upper tail part of the distribution. However, distribution generated by these

functions, except − tan−1(x2), may not have enough thick tails compared to − ln x, − tan−1(x)

and − sinh−1(x). We should, however, note that tan−1(x) and tan−1(x2) cannot be used as the

moment function to explain right tail part of income distribution; tan−1(·) function being

bounded, the associated MED cannot be defined over the whole range 0 < x < ∞. We can

consider more flexible moment functions that involve additional parameters. In Figure 3, we

plot ln(1+ xa) and sinh−1(xa) for five different values of a, and these two moment functions

have very similar behavior.

[Figure 3]

Overall, most of the densities used in the literature [see, Table 1] can be characterized by just

two moment functions that take care of lower, middle and upper income levels at the same

time. From this point of view, the fitted log-density is nothing but a linear combination of

two moment functions φ1(x, γ) and φ2(x, γ) with corresponding Lagrange multipliers, λ1 and

λ2, as the weights plus a constant [see equation (4)]. When these two moment functions are

not enough to take care of underlying income data, we can add one more moment function

φ3(x, γ) to the ME problem to extract further relevant information from the data. There is

an added safeguard in our approach. Using the RS test principle, we check the relevancy of

our moment conditions for the data in hand, as discussed in the next section.
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4 Estimation and moment selection test

4.1 Estimation of MED

Many of the papers that considered estimation of distribution using ME approach dealt

with only pure discrete or continuous data, not grouped data. Income data are, however,

sometimes available for a fixed number of intervals with respective frequencies. There are

some studies that used the grouped income data. For example, Singh and Maddala (1976)

and McDonald (1984) used the grouped income data to estimate the income densities and

Wu and Perloff (2007) considered the GMM estimation of a MED with interval data. In

the case of grouped income data the standard maximum likelihood method is not directly

applicable.

Using the multinomial distribution one can construct the likelihood function. Assume

that the income range I can be divided into K intervals Ik, k = 1, 2, · · · ,K. Let nk be the

frequency (number of individuals) of the k-th interval with
∑K

k=1 nk = N, N being the total

number of individuals. The likelihood function associated with the observed frequencies

n1, n2, · · · , nK can be written as

L(θ) = N!
K
∏

k=1

[Pk(θ)]nk

nk!
,

where Pk(θ) =
∫

Ik
f (x; θ)dx with f (x; θ) having the form of (3). Thus the log-likelihood function

l(θ) that we use for our estimation of parameter vector θ, is given by

l(θ) = ln L(θ) = d +
K
∑

k=1

nk ln Pk(θ), (7)

where d = ln N! −
∑K

k=1 ln nk. The maximum likelihood estimator which maximizes the above

log-likelihood function (7) is known to be asymptotically efficient relative to other estima-

tors based on the interval data [see Aigner and Goldberger (1970)]. Since f (x; θ) in Pk(θ) is

selected from a variety of moment functions, one cannot guarantee Pk(θ) to have analytic

forms. Therefore, in practical applications these are computed numerically using numerical

integration. We find Gauss-Legendre quadrature approach to solve above numerical integra-
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tion problem works very well.

For the unit record income data the same moment functions can be used to construct a

flexible income density function. The only difference in the estimation procedure between

the grouped data and the unit record data is the log-likelihood function. In the case of the

unit record income data the log-likelihood function, l(θ), can be expressed by

l(θ) = −N lnΩ(θ) −
N
∑

i=1

q
∑

j=1

λ jφ j(xi, γ),

where Ω(θ) =
∫

exp
[

−
∑q

j=1 λ jφ j(x, γ)
]

dx and xi represents actual unit income observation,

i = 1, 2, · · · ,N. It is easy to see that the above log-likelihood function results naturally from

the MED given in (3). The standard maximum likelihood estimation method can be directly

applied to estimate the unknown parameter vector θ. In this case, generally, lnΩ(θ) does not

have an analytic expression so that it should be computed by numerical integration.

4.2 Moment selection test

In order to construct a flexible ME income density, it is of importance to select appropriate

moment functions which determine the shape and characteristics of the ME income density

function. As discussed in Section 3, there are many candidate moment functions such as

tan−1(x/b), sinh−1(x/b), ln(1 + (x/b)2), sinh−1(x/b)2, ln(1 + (x/b)a) and sinh−1((x/b)a). In this

subsection, we propose a test statistics by which the suitability of the moment functions can

be decided.

As we discussed earlier the Lagrange multipliers (λ j, j = 1, 2, · · · , q) provide rates of

change of the maximum attainable value of H( f ) in (1) with respect to the change in the

constraints, (2). Therefore, empirically λ j should be very close to zero if the j-th associated

moment function φ j(x, γ) does not provide useful information. Our proposed test statistic

for moment selection, i.e., for testing H0 j : λ j = 0, is based on the RS principle. This can be

easily extended to a joint test for multiple moment conditions.
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By substituting
∫

Ik
f (x; θ)dx for Pk(θ) in (7) and then using (3), we obtain

l(θ) = d +
K
∑

k=1

nk ln

[∫

Ik

f (x, θ)dx

]

= d +
K
∑

k=1

nk ln
∫

Ik

1
Ω(θ)

exp

















−
q
∑

j=1

λ jφ j(x, γ)

















dx

= d − N lnΩ(θ) +
K
∑

k=1

nk ln
∫

Ik

exp

















−
q
∑

j=1

λ jφ j(x, γ)

















dx.

The first derivatives of l(θ) with respect to λl, l = 1, 2, · · · , q, is given by [here temporarily

we use ‘l’ to avoid confusion with ‘ j’, used in the above expression of l(θ)]

dl(θ) =
∂l(θ)
∂λl
= −N

∂ lnΩ(θ)
∂λl

+

K
∑

k=1

nk

∫

Ik

−φl(x, γ)Ω−1
Ik

(θ) exp

















−
q
∑

j=1

λ jφ j(x, γ)

















dx, (8)

where ΩIk(θ) =
∫

Ik
exp
[

−
∑q

j=1 λ jφ j(x, γ)
]

dx and

∂ lnΩ(θ)
∂λl

=

∫

x
−φl(x, γ) exp

[

−
∑q

j=1 λ jφ j(x, γ)
]

dx

Ω(θ)
.

The score function (8), under the null hypothesis H0l : λl = 0, reduces to

d0
l ≡ dl(θ)|λl=0 = Nδl − ∆l, (9)

where

δl = E f̃ [φl(x, γ)] =
∫

φl(x, γ)Ω̃−1(θ) exp

















−
q
∑

{ j=1,2,··· ,q}\{l}
λ jφ j(x, γ)

















dx,

and ∆l =

K
∑

k=1

nk

∫

Ik

φl(x, γ)Ω̃−1
Ik

(θ) exp

















−
q
∑

{ j=1,2,··· ,q}\{l}
λ jφ j(x, γ)

















dx.

Here, Ω̃(θ) =
∫

exp
[

−
∑q
{ j=1,2,··· ,q}\{l} λ jφ j(x, γ)

]

dx and
∑

i={1,2,··· ,q}\{ j} means summation over i =

1, 2, · · · , j − 1, j + 1, · · · , q. Hence, the RS test for H0 j : λ j = 0 will be based on

R j(θ) = d0
j = δ j −

1
N
∆ j, (10)

which can be regarded as the difference between population mean relating to the expected

value of the j-th moment function, i.e., E[φ j(x, γ)], and its sample counterpart ∆ j, all evalu-

ated under the null hypothesis. An operational form of RS statistic is

RS j = N ·
R2

j(θ̂)

V̂ j

, (11)
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where θ̂ is the maximum likelihood estimates of θ, and V̂ is a consistent estimator of asymp-

totic variance of
√

NR j(θ̂).2 Under the null hypothesis, RS j will be distributed asymptotically

as χ2
1. Since analytical expression of V j is quite complicated, we obtain variance of

√
NR j(θ̂) is

by the bootstrap method. Using the estimated bootstrap variance V̂ j,B, an operational form

of the RS test statistic is given by RS j,B = N · R2
j(θ̂)/V̂ j,B, where B denotes bootstrap sample

size. Under the null hypothesis, as B → ∞, RS j,B is asymptotically distributed as χ2
1. For

finite B, RS j,B is asymptotically distributed as F1,B−1.
3 In our application in the next section,

we set B = 200, i.e., 200 bootstrap samples are drawn from a multinomial distribution with

parameters (n1/N, n2/N, · · · , nk/N)′ to calculate V̂ j,B.
4

5 Empirical application to U.S. income data

To illustrate the suitability of our methodology, we consider various types of ME income

distribution using the U.S. family income data for the years 1970, 1980, 1990, 2000 and

2005.5 Although family income measure has some drawback in some cases, for example,

it disregards persons living in nonfamily household, it is appropriate in some other cases

to exclude nonfamily households, for example, housing affordability. The Census Bureau

conducts a survey from which it derives annual estimates of the distribution of income

across households, families, and individuals with income.6 The official measure of income

of the Census Bureau is money income. It includes earnings, dividends, pensions, interest,

2The moment selection test for the unit record income data can be derived similarly based on the log-

likelihood function for the unit record income data. We refer the readers to Park and Bera (2009) for a more

detailed derivation of moment selection test for the unit record data.
3Dhaene and Hoorelbeke (2004) shows that RS j,B is asymptotically distributed as Hotelling’s T 2 with

(1, B − 1) degrees of freedom, in short T 2
1,B−1 which can be also represented by F1,B−1.

4See Jhun and Jeong (2000) and Morales, Pardo and Santamaŕıa (2004) for detailed expositions of the

bootstrap method for categorical data.
5 In the Current Population Survey (CPS), a household is defined as all of the individuals who occupy a

housing unit as their usual place of residence. A family is defined as a group of two or more individuals who

reside together and who are related by birth, marriage, or adoption.
6The data are publicly available online at the web pages of U.S. Bureau of the Census (series P-60):

https://www.census.gov/prod/www/population.html
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and government non means-tested income, for example, unemployment compensation, social

security benefits, and veterans’ payments. Money income is calculated on a pre-tax basis

so that it does not include the value of noncash benefits, such as food stamps, medicare,

medicaid, public or subsidized housing, and employment-based fringe benefits. The data are

in a grouped format with 11 groups for 1970 and 1980 and 21 groups for 1990, 2000 and 2005.

The total money income data are given in Table A1 (Appendix), and were taken from the

Census Population Report. To conserve space we report our test and estimation results only

for the years 2000 and 2005. The results for the remaining years are similar, and reported

in an earlier version of the paper.7

We consider 3-, 4- and 5-parameter ME income densities (MEIDs) with four common

income distributions: Log-normal (LN), GG (generalized gamma), SM (Singh-Maddala),

Dagum and GB2 (generalized beta of the second kind). For 5-parameter MEID, appropriate

density functions are chosen by proposed moment selection test. In Table 2, we list all

the two-moment-functions, used in 3 (Three)- and 4 (Four)-parameter MEIDs, respectively,

denoted by T1, T2,· · · , T6 and F1,· · · , F4. Here the first and second functions take cares

of fitting lower and upper levels of income, respectively, and therefore, the expected signs

of respective Lagrange multipliers should be negative and positive. Income share elasticity

expression, η(x, f ) in (6), along with their limit values as x → ∞, for all the ten listed

models, are also given in Table 2. The parameter “a” makes the difference between 3- and

4-parameter MEIDs, as we have seen in Figure 3. Three-parameter MEIDs are special cases

of 4-parameter models with a = 2; for example, T1 and T2 are special cases of F1 and F2,

respectively. F1 is of special interest since GB2 is derived as MEID with these two moment

functions (see Table 2), of which the first and second explain the lower and upper region of

income, respectively, as we have seen in Figure 1.

[Table 2]

7We refer the reader to an earlier version of the paper, Park and Bera (2013) for a more detailed set of

results on estimation, see www.sungpark.net/MEID_ParkBera_2013.pdf
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The estimates of 3-parameter MEIDs along with a sum of squared errors (SSE) and absolute

errors (SAE), chi-squared (CSQ) and cross entropy (CE) are reported in Tables 3 and 4 for

the years 2000 and 2005, respectively. SSE, SAE, CSQ and CE are calculated as

SSE =
21
∑

k=1

(nk

N
− Pk(θ̂)

)2

,

SAE =
21
∑

k=1

∣

∣

∣

∣

∣

nk

N
− Pk(θ̂)

∣

∣

∣

∣

∣

,

CSQ = N
21
∑

k=1

(nk

N
− Pk(θ̂)

)2

/Pk(θ̂),

and CE =
21
∑

k=1

Pk(θ̂) ln
(

Pk(θ̂)/
nk

N

)

.

ln L, as in (7), provides the log-likelihood values. Since Ω(θ) and Pk(θ) do not have analyt-

ical forms, these were computed using numerical integration. Since our estimation involves

nonlinear optimization technique, there would be some approximation errors.8 In order to

check the validity of estimated models we calculate the mean value and Gini coefficient for

each model, and reported as mean and Gini in Tables 3 and 4. Following McDonald (1984),

the Gini coefficient can be expressed by

Gini = E(|y − x|)/2µ = (1/µ)(I∗(1, 0)− I∗(0, 1)),

where µ = E(y) and I∗(i, j) =
∫ ∞

0
xi f (x)

∫ x

0
y j f (y)dydx. The Gini coefficient can be calculated

using numerical integration.9 As expected, λ1 and λ2, respectively, have negative and posi-

tive signs, for all the cases. This confirms that the first and second moment functions take

care of left and right parts of income distribution, respectively. The mean values and Gini

coefficients are found to be close to the census estimates. For 2000 (Table 3), SM provides

better fit than GG judged by all five goodness-of-fit criterion, and SM and GB2 have al-

most identical goodness-of-fit. SM fits even better than GB2 in terms of SSE and SAE,

8The CML procedure in the GAUSS 9.0 program was used to maximize the multinomial log-likelihood

function. For the numerical integration we use the intqud1 function in the GAUSS program. The intquad1

function uses Gauss-Legendre quadrature to integrate a function. Program codes are available from the

authors upon request.
9We use the intgrat2 function in the GAUSS program to calculate the double integral.
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however, its log-likelihood value is small since it is a special case of GB2 (p = 1). There

is no 3-parameter MEID that outperforms SM, however, T1 and T2 outperforms GG. It

is interesting to see that the performance of T1 is better than that of GB2 in terms of all

goodness-of-fit measures. In Table 4 (2005 data), T1 and T2 are better than GG and SM

based on all five goodness-of-fit criteria and, interestingly, T2 gives lower values of SSE, SAE

and CSQ than GB2. These results are of interest since a 3-parameter model is parsimonious.

Overall, T1 and T2 fit the underlying U.S. income data very well among 3-parameter

MEIDs and dominate GG and Dagum for 2000 and SM and GG for 2005. Unfortunately,

MEID for T2 does not have analytic normalizing constant so the estimation of such an MEID

involves numerical integration. However, MEID for T1, of course, has an analytical form for

Ω(θ), given by 2bλ1−1/B(1/2− λ2/2,−1/2+ λ1/2+ λ2) if λ1 + 2λ2 > 1, λ1 < 1 and b > 0.

[Table 3]

[Table 4]

For the 5-parameter MEIDs (G), moment selection tests are performed starting with four

4-parameter MEIDs, F1 to F4 as distribution under the respective null hypothesis. The

results of our tests based on the RS statistic given in (11) with bootstrap sample size 200

are reported in Table 5. For the estimated distributions F1 to F4 we test whether each of

the five listed additional moment functions is informative enough to capture the shape of

income density. None of the additional moment functions are informative for 2000 and 2005

income data when the null density is based on F1. As noted earlier, F1 is a reparameterized

version of GB2. Therefore, we can say that the functions in GB2 act like “sufficient”moment

functions in the sense that once we start with GB2 specification, any additional moment

function does not add any further information. In other words, moments constraints of

GB2 exhaust “all” the information regarding the density that is available from the data.

When F3 and F4 models are the null models, it is clear that we need to add the moment
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function ln x. An additional third moment function can explain lower or upper (and middle)

parts of income distribution when the first two miss some valuable information in the data.

Assuming that signs of current Lagrange multipliers do not change, statistically significant

negative and positive Lagrange multiplier associated with an additional moment constraint

indicates deficiency of the density function under the null hypothesis over lower and upper

income regions, respectively. It is, of course, possible that such moment function can alter

the signs of current Lagrange multipliers so that new moment function takes care of one

region alone.

[Table 5]

In Tables 6 and 7, we present results from models under several combinations of moment

functions for which the Lagrange multipliers were significant (in Table 5) along with four

4-parameter MEIDs, F1 to F4, for the years 2000 and 2005. Among 4-parameter MEIDs, F4

fits better than any other models for 2000 and 2005, and therefore, we suggest the density

based on F4 as an alternative 4-parameter model to GB2. For 5-parameter (Generalized)

MEID, six models are considered by adding one extra moment function to 4-parameter

MEIDs from the results of moment selection test in Table 5: (i) F4+ln x; (ii) F2+ln(1+ x/b);

(iii) F2+tan−1(x/b); (iv) F3+ln(1+ x/b); (v) F3+(x/b)/(1+ (x/b)2); (vi) F4+(x/b)/(1+ (x/b)2),

and we denote them by G1, G2, G3, G4, G5 and G6, respectively. In most cases of 5-

parameter MEIDs, the sign of the first two Lagrange multipliers are unchanged, and that

associated with the additional moment constraint is either negative or positive depending

on the null model. The exception is G3 for 2005. Due to the addition of the moment

function, tan−1(·), to F2, the sign of the first moment function, ln x, is changed from (-) to

(+). Thus we can say that ln x turns to put more weights on lower income region than

others. Among 5-parameter MEIDs, in terms of five all goodness-of-fit criterion, G1, G5

and G6 outperform GB2 for 2000, and all considered models dominate GB2 for 2005. We

should note that the performance of G5 is superior for both years. The SSE, CSQ and CE of

G5 for 2005 are, respectively, 0.000034, 68.6 and 0.000361, which are quite small compared
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with those of GB2, 0.000176, 382.97 and 0.001868. Therefore, G5 is our preferred model for

the recent U.S. income data. The significance of the Lagrange multipliers in Table 5 can be

corroborated by the likelihood ratio (LR) statistics for the null hypothesis of H0 : λ3 = 0,

LR = 2[ln L(θ̂) − ln L(θ̂0)], where θ̂ and θ̂0 are the maximum likelihood estimates for the 5-

and 4-parameter models, and using the lnL(·) values from Tables 6 and 7.

[Table 6]

[Table 7]

The income share elasticities for Gi, i = 1, 2, · · · , 6 can be calculated using (6) and are given

by

η(x,G1) = 1− λ3 −
λ1x

b
√

1+ (x/b)2
− aλ2(x/b)a

1+ (x/b)a
,

η(x,G2) = 1− λ1 −
λ3x

b + x
− aλ2(x/b)a

√

1+ (x/b)2a
,

η(x,G3) = 1− λ1 −
bλ3x

b2 + x2
− aλ2(x/b)a

√

1+ (x/b)2a
,

η(x,G4) = 1− λ3x
b + x

− bλ1x
b2 + x2

− aλ2(x/b)a

√

1+ (x/b)2a
,

η(x,G5) = 1−
bx((λ1 + λ3)b2

+ (λ1 − λ3)x2)
(b2 + x2)2

−
aλ2(x/b)a

√

1+ (x/b)2a
,

η(x,G6) = 1− aλ2(x/b)a

1+ (x/b)a
−

bx((λ3 + λ1

√

1+ (x/b)2)b2
+ (−λ3 − λ1

√

1+ (x/b)2)x2)

(b2 + x2)2
,

where λ1 and λ2 are Lagrange multipliers corresponding to the first and second moment

functions (for the 4-parameter MEIDs in Table 2), and λ3 is associated with additional

moment function.

The values of limx→∞ η(x,Gi) are given by 1 − λ1 − aλ2 − λ3, 1 − λ1 − aλ2, 1 − aλ2 − λ3

and 1 − aλ2 for i = {1, 2}, i = {3, 6}, i = {4} and i = {5}, respectively. Thus if the values of

limx→∞ η(x,Gi) are negative, the WPL is readily satisfied. In the last rows of Tables 6 and

7, values of the α’s are reported, and all the above models satisfy the WPL. Lastly, since

signs of the Lagrange multipliers, particulary, for MEID having three moment functions, are
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not known before estimation process the direct check of decreasing income share elasticity

through above equations is difficult. However, it can also be easily checked by calculating

the first order derivative of the income share elasticity evaluated at maximum likelihood

estimates:

−
k
∑

j=1















λ̂ j















∂φ j(x, γ̂)

∂x
+

∂φ2
j(x, γ̂)

∂2x
x





























< 0.

We calculate the first order derivatives of six models at given income horizon and find that

they are all negative.

In Figure 5 we plot the estimated densities for GB2, F4 and G5 in which graphs in the

right panel represent the magnified version of the estimated densities in a limited range. F4

and G5 are chosen since they have the lowest values of SSE, SAE, CSQ and CE for both

the years. We can observe that model F4 with the same number of parameters as in GB2

performs much better. However, for 2000 and 2005, GB2 and F4 are not flexible enough

to explain the behavior of the middle (peaked) income region. As we can see clearly in

Figure 5, by considering one more parameter, G5 can take care of the peaked behavior.

Basically, the moment functions in F4, tan−1(x/b) and sinh−1(x/b) capture the shape of lower

and upper regions of the household income distribution. The additional moment function

(x/b)/(1 + (x/b)2) can extract further useful information of the shape of lower household

income distribution. Thus, our maximum entropy density construction approach based on

an appropriate moment selection search is useful in modeling household income data.10

[Figure 5]

10Note that the specification of G5 may not always yield the best income density with other income data

set, for example, the unit record income data. However, we should stress that one can follow our proposed

MEID methodology to obtain a flexible density that would be very close to the “true” income density function

given a set of data.
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6 Concluding remarks

In this paper using maximum entropy principle, we have provided characterization of some

well-known income density functions and suggested a class of flexible parametric densities

that satisfy weak Pareto law and other stylized facts. We introduced some moment functions

that would be appropriate to capture lower and upper income regions of distribution. To

select suitable moment functions, a test based on the Rao score principle is proposed. One

can consider our proposed score test as a pretest. It is quite well known that a pretest

may affect the inference of selected model, for example, Guggenberger (2009). However, in

this paper, we do not consider the inference after our moment selection test. Our empirical

results demonstrate that our suggested maximum entropy income densities are quite useful

in capturing the behavior of the underlying features of income data. Many other moment

functions could be chosen to generate more flexible density. Since income inequality measures

can be calculated accurately from parametric form of income distribution, finding appropriate

density is quite important, and therefore, our models would be useful to obtain good estimates

of income inequality measure and understand the true behavior of the income data.
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Appendix

Table A1: U.S. Family Total Money Income Share

Income range 1970 1980 Income range 1990 2000 2005

(in thousands) (in thousands)

0 - 2.49 6.6 2.1 0 - 4.99 3.57 2.17 2.70

2.5 - 4.99 12.5 4.1 5 - 9.99 5.84 2.85 2.61

5 - 7.49 15.2 6.2 10 - 14.99 7.50 4.53 3.73

7.5 - 9.99 16.6 6.5 15 - 19.99 7.89 5.64 4.79

10 - 12.49 15.8 7.3 20 - 24.99 8.47 5.83 5.24

12.5 - 14.99 11.0 6.9 25 - 29.99 8.00 6.08 5.31

15 - 19.99 13.1 14.0 30 - 34.99 8.15 5.95 5.40

20 - 24.99 4.6 13.7 35 - 39.99 7.57 5.60 4.93

25 - 34.99 3.0 19.8 40 - 44.99 6.61 5.32 4.97

35 - 49.99 1.1 12.8 45 - 49.99 5.87 4.99 4.71

50 - ∞ 0.5 6.7 50 - 54.99 5.13 5.00 4.58

55 - 59.99 4.14 4.31 4.07

60 - 64.99 3.62 4.63 4.32

65 - 69.99 2.95 3.85 3.78

70 - 74.99 2.38 3.68 3.62

75 - 79.99 2.09 3.24 3.22

80 - 84.99 1.64 2.91 3.05

85 - 89.99 1.33 2.45 2.58

90 - 94.99 1.02 2.28 2.56

95 - 99.99 0.79 1.71 2.11

100 - ∞ 5.44 16.97 21.81

Obs (in thousands) 52227 60309 66322 72388 77418

Mean (in thousands) 11.106 23.974 43.652 65.570 73.300

Gini 0.354 0.365 0.395 0.415 0.414

Notes: Source: Current Population Survey. Obs denotes the number of family as of March

of the following year. Mean and Gini represent Census estimates for mean and Gini index.

The data are obtained by multiplying the reported figures by (100/obs), i.e., nk/N for each

k-th income group.
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Table 1: Maximum entropy characterization of some common income densities

Type Side constraints Resulting density, f (x) = Common form, f (x) =

LN
∫

ln x f (x)dx = µ exp
[

−λ0 − λ1 ln x − λ2(ln x)2
]

1
σ
√

2πx
exp
[

− (ln x−µ)2

2σ2

]

, 0 < x < ∞
∫

(ln x − µ)2 f (x)dx = σ2 µ > 0, σ > 0

Gamma
∫

x f (x)dx = a exp [−λ0 − λ1x − λ2 ln x] 1
Γ(a) exp−x xa−1, 0 < x < ∞

∫

ln x f (x)dx = ψ(a) a > 0

Beta
∫

ln x f (x)dx = ψ(a) − ψ(a + b) exp [−λ0 − λ1 ln x − λ2 ln(1− x)] 1
B(a,b) xa−1(1− x)b−1, 0 < x < 1

∫

ln(1− x) f (x)dx = ψ(b) − ψ(a + b) a > 0, b > 0

Weibull
∫

ln x f (x)dx = −γ/a exp [−λ0 − λ1xa − λ2 ln x] axa−1 exp [−xa] , 0 < x < ∞
∫

xa f (x)dx = 1 a > 0

Fisk
∫

ln x f (x)dx = − ln(b−a)
a exp [−λ0 − λ1 ln x − λ2 ln(1+ (x/b)a)] axa−1

ba(1+(x/b)a )2 , 0 < x < ∞
∫

ln(1+ (x/b)a) f (x)dx = 1 a > 0, b > 0

GG
∫

ln x f (x)dx = − ln(b−a)−ψ(p)
a exp [−λ0 − λ1 ln x − λ2xa] axap−1 exp[−(x/b)a ]

bapΓ(p) , 0 < x < ∞
∫

xa f (x)dx = Γ(1+p)
Γ(p) ba a, b, p > 0

SM
∫

ln x f (x)dx = −γ+ln(b−a)+ψ(q)
a exp [−λ0 − λ1 ln x − λ2 ln(1+ (x/b)a)] aqxa−1

ba(1+(x/b)a )1+q , 0 < x < ∞
∫

ln(1+ (x/b)a) f (x)dx = 1
q a, b, q > 0

Dagum
∫

ln x f (x)dx = −−γ+ln(b−a)−ψ(p)
a exp [−λ0 − λ1 ln x − λ2 ln(1+ (x/b)a)] apxap−1

bap(1+(x/b)a)p+1 , 0 < x < ∞
∫

ln(1+ (x/b)a) f (x)dx = γ + 1
p + ψ(p) a, b, p > 0

GB2
∫

ln x f (x)dx = − ln(b−a)−ψ(p)+ψ(q)
a exp [−λ0 − λ1 ln x − λ2 ln(1+ (x/b)a)] axap−1

bapB(p,q)(1+(x/b)a)p+q , 0 < x < ∞
∫

ln(1+ (x/b)a) f (x)dx = ψ(p + q) − ψ(q) a, b, p, q > 0

Notes: ψ(a) = Γ′(a)/Γ(a) denotes digamma function, and γ denotes Euler’s constant.
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Table 2: Combination of moment functions corresponding to different models along with the corresponding income share

elasticity functions and their limits

Model First moment function Second moment function Income share elasticity function (η(x, f )) limx→∞ η(x, f )

Three-parameter MEIDs

T1 ln x ln(1+ (x/b)2) 1− λ1
2λ2x2

b2+x2 1− λ1 − 2λ2

T2 ln x sinh−1((x/b)2) 1− λ1 − 2λ2x2

b2
√

1+(x/b)4
1− λ1 − 2λ2

T3 ln(1+ x/b) ln(1+ (x/b)2) 1− λ1x
b+x −

2λ2x2

b2+x2 1− λ1 − 2λ2

T4 ln(1+ x/b) sinh−1((x/b)2) 1− λ1x
b+x −

2λ2x2

b2
√

1+(x/b)4
1− λ1 − 2λ2

T5 tan−1(x/b) ln(1+ (x/b)2) b2−bλ1x+x2−2λ2x2

b2+x2 1− 2λ2

T6 sinh−1(x/b) sinh−1((x/b)2) 1− λ1x

b
√

1+(x/b)2
− 2λ2x2

b2
√

1+(x/b)4
1− λ1 − 2λ2

Four-parameter MEIDs

F1 ln x ln(1+ (x/b)a) 1− λ1 − aλ2(x/b)a

1+(x/b)a 1− λ1 − aλ2

F2 ln x sinh−1((x/b)a) 1− λ1 − aλ2(x/b)a√
1+(x/b)2a

1− λ1 − aλ2

F3 tan−1(x/b) sinh−1((x/b)a) 1− bλ1x
b2+x2 − aλ2(x/b)a√

1+(x/b)2a
1− aλ2

F4 sinh−1(x/b) ln(1+ (x/b)a) 1− λ1x

b
√

1+(x/b)2
− aλ2(x/b)a

1+(x/b)a 1− λ1 − aλ2
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Table 3: Estimated density functions (common and 3-parameter MEIDs) : Year 2000

LN GG SM Dagum GB2 T1 T2 T3 T4 T5 T6

a (λ1) 3.8570 1.1221 1.6071 2.7497 1.9285 -0.5344 -0.4931 -4.7904 -3.9845 -3.2408 -3.3963

b (λ2) 0.7870 43.2993 139.3646 73.1575 101.6993 2.7649 2.0055 3.8483 2.9239 2.1813 3.0888

p (b) 1.5185 0.5266 0.7990 95.4776 92.9525 65.9555 78.8410 45.3819 74.3686

q (a) 3.8524 2.2441

SSE 0.002177 0.000170 0.000142 0.000186 0.000144 0.000145 0.000164 0.000254 0.000393 0.000247 0.000424

SAE 0.168034 0.045510 0.042151 0.049731 0.042545 0.042345 0.045757 0.063058 0.076721 0.062715 0.079821

CSQ 5524.01 364.51 299.23 312.47 279.98 278.65 288.46 414.46 657.87 400.90 710.61

CE 0.023040 0.002785 0.002260 0.001956 0.002107 0.002019 0.001978 0.003063 0.004698 0.002646 0.005185

lnL -211561.37 -209690.00 -209655.36 -209690.32 -209648.39 -209644.99 -209650.01 -209708.97 -209832.42 -209701.78 -209859.09

Mean 69.7673 61.0268 62.4039 65.3483 63.1558 63.4936 65.8757 66.6061 70.8343 65.4424 69.4452

Gini 0.4670 0.3855 0.3982 0.4225 0.4046 0.4075 0.4268 0.4330 0.4641 0.4236 0.4543

α 3.9954 2.5179 1.9062 0.8633 3.3626 1.7813

Notes: Census estimates for mean and Gini are 65.594 and 0.415, respectively. λ1 and λ2 are Lagrange multipliers correspond to first and second

moment constraints. Parameters in the parenthesis, λ1, λ2, b and a in order, denote those for models Ts. α denotes the constant for WPL in (5).
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Table 4: Estimated density functions (common and 3-parameter MEIDs) : Year 2005

LN GG SM Dagum GB2 T1 T2 T3 T4 T5 T6

a (λ1) 3.9575 1.3454 1.4610 2.7953 2.1586 -0.3863 -0.3674 -3.9803 -3.3578 -2.7716 -2.8763

b (λ2) 0.9103 69.2895 319.6971 86.9740 112.1601 2.8887 1.9369 3.4810 2.6270 2.1326 2.7710

p (b) 1.0727 0.4711 0.6315 121.2684 109.0262 76.5951 87.1563 55.5404 82.4953

q (a) 9.0846 1.8520

SSE 0.002513 0.000221 0.000197 0.000186 0.000176 0.000174 0.000174 0.000149 0.000219 0.000146 0.000235

SAE 0.185251 0.049661 0.043920 0.048173 0.044313 0.042475 0.043280 0.044935 0.053188 0.044731 0.055720

CSQ 7277.19 492.98 472.29 374.86 383.97 394.95 383.03 285.98 418.07 279.98 448.36

CE 0.026877 0.002702 0.002759 0.001386 0.001868 0.001999 0.002247 0.001297 0.002052 0.001159 0.002037

lnL -222515.86 -220024.27 -220009.82 -220003.47 -219974.63 -219973.02 -219967.46 -219915.31 -219981.04 -219912.11 -219995.99

Mean 81.1471 67.3306 68.3355 72.5946 70.5013 70.3297 73.5717 74.7726 80.3687 73.5611 79.0753

Gini 0.4928 0.3901 0.3985 0.4302 0.4151 0.4140 0.4373 0.4442 0.4788 0.4358 0.4711

α 4.3911 2.5064 1.9817 0.8962 3.4936 1.6657

Notes: Census estimates for mean and Gini are 73.304 and 0.414, respectively. λ1 and λ2 are Lagrange multipliers correspond to first and second

moment constraints. Parameters in the parenthesis, λ1, λ2, b and a in order, denote those for models Ts. α denotes the constant for WPL in (5).
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Table 5: Moment function selection test results

Null model Moment function 2000 2005

(x/b)/(1+ (x/b)2) 0.484 (0.487) 1.345 (0.246)

tan−1(x/b) 0.000 (0.988) 0.324 (0.569)

(i) F1 sinh−1(x/b) 0.430 (0.512) 0.000 (0.998)

tan−1((x/b)2) 0.834 (0.361) 1.664 (0.197)

sinh−1((x/b)2) 0.002 (0.965) 0.011 (0.918)

ln(1+ x/b) 4.563∗ (0.033) 4.104∗ (0.043)

(x/b)/(1+ (x/b)2) 0.045 (0.833) 0.788 (0.375)

(ii) F2 tan−1(x/b) 9.025∗∗ (0.003) 9.763∗∗ (0.002)

ln(1+ (x/b)2) 0.013 (0.908) 0.197 (0.657)

tan−1((x/b)2) 0.012 (0.914) 0.000 (0.996)

ln(x) 487.164∗∗ (0.000) 276.836∗∗ (0.000)

ln(1+ x/b) 5.916∗ (0.015) 1.525 (0.217)

(iii) F3 (x/b)/(1+ (x/b)2) 8.630∗∗ (0.003) 4.366∗ (0.037)

ln(1+ (x/b)2) 1.473 (0.225) 0.758 (0.384)

tan−1((x/b)2) 0.288 (0.592) 0.108 (0.743)

ln(x) 39.762∗∗ (0.000) 144.389∗∗ (0.000)

(x/b)/(1+ (x/b)2) 3.814 (0.051) 3.403 (0.065)

(iv) F4 tan−1(x/b) 2.207 (0.137) 1.330 (0.249)

tan−1((x/b)2) 3.049 (0.081) 2.922 (0.087)

sinh−1((x/b)2) 0.678 (0.411) 0.645 (0.422)

Notes: (i)-(iv) denote null density corresponds to the moment functions in Table 3. The test statistics are

calculated with the bootstrap sample size 200. P-values are calculated using asymptotic χ2
1 distribution and

given in the parentheses. 5% and 1% critical values of Hotelling’s T 2
1,99 are 3.937 and 6.898, respectively. ∗

and ∗∗ indicate statistical significance at the 5% and 1% levels, respectively.
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Table 6: Estimated 4- and 5-parameter MEIDs : year 2000

F1 F2 F3 F4
λ1 -0.5237 -0.5387 -5.8426 -10.3641
λ2 2.5498 2.5074 3.9445 11.3087
b 91.2540 104.0125 43.3102 46.6547
a 2.0761 1.7535 1.2149 1.3966

SSE 0.000147 0.000149 0.000229 0.000139
SAE 0.042484 0.042847 0.060171 0.042748
CSQ 278.20 279.14 373.32 239.79
CE 0.002227 0.002041 0.002751 0.001883
lnL -209644.74 -209645.38 -209688.19 -209623.32
Mean 63.7159 64.8072 65.0011 63.6833
Gini 0.4094 0.4186 0.4200 0.4088
α 3.7699 2.8580 3.7922 4.4296

G1 G2 G3 G4 G5 G6
λ1 -9.8981 -0.3861 -0.4124 -6.1732 -7.8673 -11.5359
λ2 11.4364 11.4093 5.0201 10.7979 1.5439 9.6802
λ3 -0.1157 -11.2629 -4.5249 -7.9702 7.5917 4.2798
b 53.5454 127.8902 74.5703 61.0381 19.9022 45.1606
a 1.3878 1.1261 1.2037 1.0861 3.3913 1.7861

SSE 0.000129 0.000146 0.000149 0.000215 0.000077 0.000102
SAE 0.040998 0.042809 0.043167 0.057563 0.032440 0.036884
CSQ 232.50 263.76 271.04 351.48 138.00 191.47
CE 0.001860 0.002002 0.002154 0.002635 0.000959 0.001449
lnL -209620.29 -209636.89 -209640.67 -209677.83 -209571.26 -209599.64
Mean 63.3096 65.2761 63.6397 65.4972 64.1612 63.1142
Gini 0.4056 0.4225 0.4084 0.4240 0.4134 0.4040
α 4.8576 0.1990 4.6303 2.7574 4.2358 4.7539

Notes: G1: F4+ln(x); G2: F2+ln(1 + x/b); G3: F2+tan−1(x/b); G4: F3+ln(1 + x/b); G5: F3+(x/b)/(1+ (x/b)2); G6: F4+(x/b)/(1+ (x/b)2). Census

estimates for mean and Gini are 65.594 and 0.415, respectively. λ1, λ2 and λ3 are Lagrange multipliers correspond to first, second and additional

moment constraints selected from the test, respectively. α denotes the constant for WPL in (5).
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Table 7: Estimated 4- and 5-parameter MEIDs : year 2005

F1 F2 F3 F4
λ1 -0.3371 -0.3450 -5.4562 -7.0794
λ2 1.5553 1.6257 3.9739 8.1248
b 86.8065 99.8908 52.3811 70.2124
a 2.6478 2.2165 1.1925 1.5192

SSE 0.000172 0.000177 0.000140 0.000115
SAE 0.044647 0.044672 0.044128 0.039814
CSQ 367.26 377.42 272.61 238.32
CE 0.001747 0.001812 0.001130 0.000900
lnL -219959.58 -219964.94 -219908.65 -219891.80
Mean 73.1060 74.8709 72.9577 71.4000
Gini 0.4337 0.4457 0.4316 0.4206
α 2.7810 2.2584 3.7388 4.2637

G1 G3 G5
λ1 -9.8760 0.0277 -7.6171
λ2 9.8924 3.8856 1.4376
λ3 0.2544 -5.4944 8.0585
b 47.6501 50.8447 22.5469
a 1.4504 1.1980 3.6497

SSE 0.000108 0.000142 0.000034
SAE 0.038692 0.044140 0.020928
CSQ 206.18 272.62 68.60
CE 0.000659 0.001221 0.000361
lnL -219874.42 -219908.36 -219804.79
Mean 72.3757 73.1101 71.6525
Gini 0.4275 0.4327 0.4226
α 3.7263 3.6826 4.2468

Notes: G1: F4+ln(x); G3: F2+tan−1(x/b); G5: F3+(x/b)/(1+ (x/b)2). Census estimates for mean and Gini are 73.304 and 0.414, respectively. λ1,

λ2 and λ3 are Lagrange multipliers correspond to first, second and additional moment constraints selected from the test, respectively. α denotes the

constant for WPL in (5).
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Figure 1: Log-empirical probability and log-density estimates
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Notes: Left: Log-empirical probability (solid step function) and three log-density estimates using 1970 U.S. grouped income data which are in 11-group

format. f 1 is the MED with two moment functions, namely, log(x) and log(1+ (x/b)a); f 2 uses only one moment function log(1+ (x/b)a), while f 3 is

based log(x) and log(x)2. Right: Enlarged version of left graph for a shorter, (0,35) income range.
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Figure 2: Moment functions related to income distribution
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Figure 3: Moment functions: ln(1+ xa) and sinh−1(xa)
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Figure 4: Density estimates for the US personal income for 2000 and 2005
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