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Abstract

We propose an empirical test for determining if rewarded tasks are cost complements or
substitutes in a pay for performance scheme with kinks on linear task-speci�c reward functions.
The test is based on the insensitivity of e�ort exerted on a particular task to variations in the
price of competing tasks for agents who are bunched near the kinks. As a case study, we
consider the case of the Quality and Outcomes Framework (QOF). This system accounts for
nearly a quarter of family doctors' income and is the largest pay-for-performance programme
for primary care services in the world. We found that changes introduced in the system in 2011
were tasks that were complements of many of the unmodi�ed tasks. As a result, there is no
evidence of e�ort-diversion as a result of the changes.

JEL: D8, I11, J2

1 Introduction

Principal-agent relationships are widespread in economics. Since Holmstrom and Milgrom [1991]'s
seminar article, it is well understood that the agent's cost function plays a crucial role in a multitask
environment, that is, when the agent must carry out more than one task. If tasks complement
each other, rewarding one task will be enough to increase the production of an unrewarded task.
If, however, tasks substitute for each other, rewarding one will reduce the e�ort exerted on the
unrewarded task. Complementarities/substitutions across tasks not only play a role in the structure
of incentive contracts, but also in job design. Whenever possible, tasks that are substitutes should
be performed by di�erent agents, each of them carrying out tasks that complement each other.

In this paper, we show how to recover from the data whether tasks are complements or sub-
stitutes when the agent faces a two-part linear contract, essentially a contract with two di�erent
piece-rate levels. Our approach exploits a change in the incentives faced by the agents, but in
contrast to the literature, we can exploit nationwide incentive changes, and do not need that a
�control� group, that is, a group of agents not eligible for the change of incentives.

∗We would like to acknowledge the valuable comments and suggestions by David Bardey, Helmuth Cremer,
Jonathan Kolstad, Albert Ma, Suphanit Piyapromdee, Luigi Siciliani, and participants at the 18th European Health
Theory Workshop (Oslo, May 2017).
†Assistant Professor, Universidad del Rosario
‡Reader, University College London
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Our main insight is that when agents face two-part linear contracts, a group of agents will
naturally choose to produce at the level of the kink of the two-part contract, the level at which the
piece rate changes. We show that these agents are insensitive to local changes in the incentives of
other tasks, independently of how the tasks interact in the cost function. Hence, the individuals
who self-select to produce at the kink will work as a �control� group. Because linear two-part
contracts are quite prevalent (and we do not need an explicit control group), our method greatly
expands the situations in which we can test for complementarities/substitutions in the agent's cost
function. Empirically, the test consists on two steps. First, we test for the relevance of the kink by
borrowing some concepts from taxation literature [Saez, 2010, Kleven, 2016]: the presence of kinks
implies bunching in the distribution of the relevant output. Then, it is possible to detect if the kink
on the payment's function is important for a task just by analysing its output density function.
Second, a di�erence-in-di�erences (DiD) style of regression is suggested, where the control group
corresponds to those agents at the kink. Here we are not assuming that the payments system is
not a�ecting those agents, rather we rely on the insensitivity of those practices, which decided that
their optimal e�ort level attained the output level of the kink, to small changes on the reward of
other tasks.

We apply our method to identify whether di�erent activities that family doctors perform are
complements or substitutes in their cost function. Examples of the activities that we analyse include
carrying out certain tests on diabetic patients, recording smoking history in at risk patients, or
reviewing asthmatic patients with some minimum frequency, among others.

The types of activities that we analyse contrast with much of the existing empirical literature
that has focused on much simpler activities.1 This literature has focused on studying a speci�c
case of multitasking: the trade-o� between quantity and quality within a single activity. Because
of the very nature of it, quantity and quality are either substitutes or independent at best, but
complementarity is rightly dismissed.2 Because we study genuinely di�erent tasks (rather than the
quantity and quality of a single task), the possibility of complementarities across them is real. It
might well be, for instance, that the marginal cost of carrying out a test is smaller if another test
is also being conducted during the same visit.

Monetary incentives are also used amongst professions with a large pro-social component, such as
teachers and doctors. Although crowding out of intrinsic motivation is usually cited as a concern,
multitasking is another one. Unsurprisingly, there is a reasonably large body of literature for
�teaching to the test�, and more generally whether teachers shift e�ort from unrewarded tasks to
rewarded ones (see Neal [2011] for a review of US focused studies).3 The evidence on health care
probably lags behind that on education. Dumont et al. [2008] found that Canadian physicians who
voluntary signed up to a contract that paid less for a speci�c quantity of consultations, increased
the average time per consultation (an indicator of quality) as well as other activities unremunerated
at the margin (i.e. teaching). Feng Lu [2012] exploited a mandatory quality disclosure policy and
found that nursing homes improved scores on quality measures for the reported dimensions, but
deteriorated in regard to unreported ones.

In this paper, we exploit the Quality Outcomes Framework (QOF), a programme established
in 2004 that remunerated all family doctors in England according to their performance in a large

1See for instance, Lazear [2000], Shearer [2004], Kosfeld and Neckermann [2011], Bradler et al. [2013].
2Al-Ubaydli et al. [2012] �nds that higher piece rates leads to higher quality when stu�ng envelopes, but this is

explained because the piece-rate mechanism signals to the agent that the principal has a good monitoring technology
rather because there are complementarities in the cost function.

3Muralidharan and Sundararaman [2011], and Glewwe et al. [2010] are examples of developing country studies).
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battery of indicators. There is a remuneration schedule for each rewarded indicator, which has a
lower and an upper limit. The doctor's remuneration increases linearly as long as the indicator is
between the lower and upper limit, and �attens out if the upper limit is passed. The programme
was rolled out simultaneously across England, and any changes to the remuneration schedule also
apply nationally. This makes it an ideal setting to apply the method that we develop in this paper.

The QOF is the largest primary care pay for performance programme worldwide [Roland and
Olesen, 2016], and has already received some attention. Sutton et al. [2010] compared incentivised
and unincentivised measures before and after the introduction of the program, a improvements in
both measures which were higher for incentivised ones.4 This approach relies on the assumption
that incentivised and unincentivised measures would follow a common trend in the absence of the
program. While important, this approach restrict the analysis to tasks that were initially regarded
as less important, and which might be di�erent enough to the originally incentivised ones making
the parallel trends assumption a strong assumption. Moreover, despite being informative when the
programme is introduced, this approach cannot be used to explore systems that have been in place
for several years. Instead of relying on the implementation period of the QOF and analysing tasks
which were not remunerated, our work analyses tasks that are currently remunerated in a period
when QOF has already been in place for more than �ve years. This is possible because our test
takes advantage the design of the payments system. Also, as there is a period in which there are
changes to rewards (2010/11) where there was a net price drop in a set of modi�ed indicators,
preceded by a period without them (2009/10), we are able to distinguish e�ort response to the new
rewards from variations linked to year-to-year variation, which are correlated with performance.

With our procedure, for those tasks which their remuneration was not modi�ed between 2009
and 2011, we are able to assess whether each task is a complement or a substitute of the set of
tasks that were modi�ed or removed in this period. We found that there is no robust evidence of
substitutability between tasks in the system, and if anything, several of them are complements. In
particular, we found that the reduction on the price drop of certain tasks, principally on the clinical
areas of diabetes and cardiovascular disease, resulted on a drop on the output of some indicators
which were not modi�ed but which re�ect tasks in the same areas.

After this introduction, we present a basic model of multitasking with a two-part linear reward
function for agents. Given that, we show the conditions under which we are able to identify
complementarities/substitution in the cost function empirically. This is followed by a description
of the QOF and the results of using our test on it. Finally, the conclusions are presented.

2 Model

Our test is based on the existence of a two-part linear tari� on a principal-agent relationship. In
order to understand the intuition behind the test, we will start by presenting a simple version of
the model without uncertainty. In this model, we will introduce the kink produced by a two-linear
tari� and examine its implications. Later, we will consider how this main ideas would be a�ected
by introducing uncertainty.

Consider a principal-agent relationship with two distinct tasks. The principal hires the agent
to exert task-speci�c e�orts (e1, e2). The principal bene�ts increasingly from the output of the
two tasks (x1,x2). The agent is paid according to P (x1, x2; a1, a2) = T + a1x1 + a2x2 , where T

4Kaarboe and Siciliani [2011] motivate their multitasking model using the QOF. They argue, based on the results
of Sutton et al. [2010], that quality dimensions in primary care might be complements.
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represents a lump-sum payment, and ai is the piece rate associated to xi. The agent's cost function
is given by C(e1,e2; z). characterised by a parameter z. We assume that for i ∈ 1, 2 we have that
∂C
∂ei

= Ci > 0, ∂
2C
∂e2ii

= Cii > 0, ∂C
∂z > 0, ∂2C

∂z2 > 0, and that C is a convex function, but we do

not restrict the sign of the cross-derivatives Cij = ∂2C
∂ej∂ei

, i 6= j. That is, while we know that it

is increasingly costly to exert e�ort, we do not know if increasing e�ort in one task, increases or
reduces the marginal cost of exerting e�ort on the other task. In the former case, the tasks are said
to be substitutes, and in the latter they are complements. Our main goal is to estimate the sign
Cij to ascertain whether the tasks are complements or substitutes.

The agent takes the contract P (x1, x2) as given, and decides optimal levels of e�ort in order to
maximize his surplus, that is:

max
e1,e2

U = E [P (x1, x2; a1, a2)− C(e1, e2; z)] (1)

2.1 Model without uncertainty

Let's assume that xi=ei and that providers are heterogeneous only on an e�ciency parameter z
which is assigned in the population following a pdf g(·), or CDF G(·). Speci�cally, let's assume
that C(e1, e2; z) = 1

zC(e1, e2). As a result, given a contract speci�ed by {T, a1, a2}, the provider
will solve:

max
e1,e2

U = (T + a1 · e1 + a2 · e2)− 1

z
C(e1, e2). (2)

The �rst order conditions (FOC) of the problem are given by:5

ai −
1

z
Ci = 0, i ∈ {1, 2} (3)

Essentially, the marginal bene�t (ai) of exerting e�ort has to be equal to the marginal cost
( 1
zCi). If we di�erentiate these FOC, we obtain:

dai −
1

z
Ciidei −

1

z
Cijdej = 0, i 6= j, i, j ∈ {1, 2} (4)

This system of equations allows us to explore how optimal allocation of e�ort in each task would
be adjusted as a response to variations in the piece-rates ai and to the e�ciency parameter z.

Proposition 1. With a linear payment and without uncertainty, we have that de1
da2

= −z·C12

C11C22−C2
12
>

0, and hence that the sign of de1da2
is opposite to the sign of C12. If the tasks are substitutes (C12 > 0),

we will have that de1
da2

< 0. On the contrary, if the tasks are complements (C12 < 0) then de1
da2

> 0.

Proof:

If we set da1 = 0, that is, a1 as the unchanged P4P incentive, we can obtain that

de2 = −C11

C12
de1 (5)

5The second order condition (SOC) is given by C11C22 − C2
12 > 0, which we assume to hold.
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And hence, the impact of modifying the reward a2 on e2 is obtained by substituting (5) in the
FOC of e2 :

de1

da2
=− z · C12

C11C22 − C2
12

(6)

Q.E.D.

If we consider that da2 = 0 but da1 6= 0, we can derive the response on optimal e�ort for task
1, given variations in its own price. As expected, it is unambiguously positive:

de1

da1
=

z · C22

C11C22 − C2
12

> 0 (7)

Assumption 1. We assume that de1
dz = a1C22−a2C12

C11C22−C2
12
> 0, for any value of z.

Note that this is a very natural assumption: if the agent becomes more e�cient and its costs
decreases, he will exert more e�ort. It is indeed guaranteed for the case of complements, because
C12 < 0. For the case of substitutes, we need to assume that C22 is not too small compared to C12.
Otherwise, the agent might greatly increase e2 and decrease e1.

2.2 The role of kinks

Now, let's consider a two-part linear payment function, with a kink at e1 = UL.6 We consider a
piece-rate for a given task varies at UL from a1to ā1, as shown in Equation 8 below. As a notation
convention, all objects denoted with a lower bar will be related to the contract when the output is
below UL, and those with an upper bar for the contract when the output is above such a value.
Following our speci�c application,7 we will consider a1 > ā1, so the marginal bene�t of e1 decreases
discontinuously at e1 = UL. Notice that this payment function also implies that the �x income
jumps in order to maintain the total payment continuous at UL.

P (x1, x2; a1, a2) =

{
a1x1 + a2x2 + T if x1 < UL

ā1x1 + a2x2 + T + (a1 − ā1) · UL if x1 ≥ UL
(8)

Proposition 2. Without uncertainty, the presence of a kink at e1 = UL implies that those providers

with a z ∈ [z, z̄] choose e∗1 = UL. Moreover, de1
da2

= 0 for them.

Proof:

Below the threshold UL, for a given z there is a optimal level of e�ort e1(z) = e∗1(z, a1, a2). In
particular, we assume that ∃z = z st e1(z) = UL. Above the threshold, e1 > UL, there is also an
optimal allocation ē1(z̄) = e∗1(z, ā1, a2), and we also assume that ∃z st ē1(z̄) = UL.

6As will be described in the application section, the QoF is a three-part linear contract. It has a zero piece-rate
below a �rst threshold, the lower limit, and above a second threshold, the upper limit. We will concentrate on what
happens around the upper limit given that most of the agents are situated around or above it. Nevertheless, the
model and empirical test detailed in this paper could potentially be formulated to the lower limit if there was enough
information.

7The QoF presents an extreme scenario: a1 > ā1 = 0. The results that we present here do not require a zero
marginal bene�t for unit of e�ort after the upper threshold. An alternative interpretation is that ā1 represents the
altruistic marginal bene�t that the physicians obtain for improving their patients' health.
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Given that a1 > ā1, the optimal e�ort above UL, ē1(z) = e∗1(z, ā1, a2), has to be smaller than the
corresponding decision if there were no kink: e1(z) > ē1(z) ∀z. In particular, UL = e1(z) > ē1(z).
This is due to Equation 7. Notice that it has to be the case that e∗1(z+ε, a1, a2) > e∗1(z, a1, a2) ∀ε >
0, which holds because of Assumption 1 (a1C22− a2C12 > 0).8 As a result, given that UL > ē1(z),
it is required that z̄ > z.

Those providers with a z ∈ [z, z̄] have to choose e∗1 = UL, even though the FOC is not satis�ed,
because any deviation would be detriment of their utility. Let us consider the diagram on Figure 1
to illustrate the argument. Point A represents the decision of a provider with productivity z, which
is e∗1 = UL as stated before. Point C does the same for the typical z̄ provider, which also chooses
e∗1 = UL.

Let us consider a provider with a productivity in between, z̃ ∈ (z, z̄). Without the kink, the
optimal decision under e1(z) would have been point B′; however under the kinked payment function
it is not optimal. At this point the marginal cost of exerting e�ort is larger than the marginal bene�t
of doing so, C1

C2
a2 > a1 (from the FOC), so it is a better idea to reduce e�ort in order to enhance

utility. An alternative scenario is to consider a world where a1 = ā1, ∀e1; in such a scenario B′′

would have been the choice. Once again, under the actual kinked function this is suboptimal. The
provider is better o� if e�ort is increased, as at that point C1

C2
a2 < a1. As a result, due to the

non-smoothness of the optimization problem, the provider is better o� at point B, even though the
FOCs do not hold. Notice that as C1

C2
a2 6= a1, the e�ect of a small variation in a2 would have no

impact on the allocation of a∗1. As a result, de1da2
= 0 for those providers with a z ∈ [z, z̄].

Proposition 3. Without uncertainty, the presence of a kink at e1 = UL generates bunching on the

distribution of e�ort on task one, H(e1).

Proof:

For this proof we provide an argument which follows Saez's [2010] reasoning for the taxation liter-
ature.9 We de�ne H(ẽ1) = Pr [e∗1(z, a1, a2) ≤ ẽ1] = Pr

[
z ≤ e∗−1

1 (ẽ1; a1, a2)
]

= G
[
e∗−1

1 (ẽ1; a1, a2)
]
,

where e∗−1
1 (·) is the inverse function of e∗1(z). As explained above, e∗1(z) is piecewise de�ned, which

is also the case for H(ẽ1). Below UL we have H(ẽ1) = G
[
e∗−1

1 (ẽ1; a1, a2)
]
, and above it the rel-

evant function is H̄(ẽ1) = G
[
e∗−1

1 (ẽ1; ā1, a2)
]
. Given that all providers with a z̃ ∈ [z, z̄] have to

choose e∗1 = UL, an entire mass that would have exerted an e�ort e1(z̃) > UL if there were no kink
is now collapsed at that single point and has a value of b = h(UL) = H(e1(z̄))−H(UL). Above z̄,
the distribution will follow h̄(e1)

Figure 2 extends the previous example and considers a uniform density g(z) and how it trans-
forms into h(e1). For z < z, the kink makes no di�erence at all: h(e1) = h(e1). However, for
those z ∈ [z, z̄] there is a clear change. Without the kink, such provider would have exerted
e1 ∈ [UL,UL+ ∆e], between points A and D in the �gure, which would have followed the density
h(e1). Because of the kink, AD became AC and the entire area b is now collapsed into a unique
spike at e1 = UL. Finally, for z > z̄ we have that optimal e�ort is given by ē1(z), which is re�ected
by density h̄(e1). Notice that it is required that 1−H̄(UL) = 1−H(UL), so the �nalH(e1) is a valid
CDF. This is re�ected in the fact that all observations that would have covered e1 ∈ [UL+ ∆,∞),
are now spread into e1 ∈ [UL,∞).10

8If the assumption does not hold, e∗1 = 0 as discussed before. A milder version would be when a1 ·C22−a2C12 > 0
but ā1 · C22 − a2C12 < 0. In such a case e∗1 = UL will always be preferred for all z ≥ z . This implies that there
should not be no provider above UL, regardless of the value of z.

9See Kleven [2016] for a good and intuitive explanation on why bunching arises at income distribution as a results
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Figure 1: The e�ect of a kink on rewards at e1 = UL

z

e1

UL

e1(z) = e∗1(z, a1, a2)

e∗1(z)

ē1(z) = e∗1(z, ā1, a2)

A B

B′

B′′

C

z z̃ z̄

Note: Providers' payment for task 1 e�ort below UL is a1, and above it is ā1 < a1. It produces a piecewise optimal

e�ort function e∗1(z) = e1(z)×1(e1 ≤ UL)+ē1(z)×1(e1 > UL), where e1(z) = e∗1(z, a1, a2) and ē1(z) = e∗1(z, ā1, a2).

This diagram assumes constant second derivatives of function C(e1, e2). It is also assumed that both tasks are

substitutes, so the slope above UL is smaller than below it (see Assumption 1). Nevertheless, in the diagram

ã1C22 − a2C12 > 0, hence the values of e∗1 above UL are feasible.
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Figure 2: The e�ect on e1 density of a kink on rewards at e1 = UL

z

e1

0

UL

UL+ ∆e

e∗1(z)

e1(z)

ē1(z)

A C

D

Density

e1

b

h(e1)

h̄(e1)

bunching

z

Density

g(·)

z z̃ z̄

Note: Providers' payment for task 1 e�ort below UL is a1, and above it is ā1 < a1. It produces a piecewise optimal

e�ort function e∗1(z) = e1(z)×1(e1 ≤ UL)+ē1(z)×1(e1 > UL), where e1(z) = e∗1(z, a1, a2) and ē1(z) = e∗1(z, ā1, a2).

This diagram assumes constant second derivatives of function C(e1, e2). It is also assumed that both tasks are

substitutes, so the slope above UL is smaller than below it (see Assumption 1). Nevertheless, in the diagram

ã1C22 − a2C12 > 0, hence the values of e∗1 above UL are feasible.
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2.3 Extensions

The model presented above provides the basic intuition for understanding the implications of the
two-tari� payment system on the responsiveness of agents' e�ort in a task to marginal variations
of the �nancial rewards of alternative ones. Nevertheless, the model does not consider realistic
scenarios such as the presence of uncertainty, or the potential preference for certain cash-�ow that
agents might exhibit (risk aversion). Appendix A shows that under such conditions, in general terms
the main results still hold. As expected, extreme scenarios such as very high levels of variance of
the unobserved component of the output, will result in the irrelevance of the kink.

3 Empirical Test

In this section we present how we implement the test for determining whether a speci�c task is
a complement or a substitute of a set of tasks for which there was an observed variation on the
reward per unit of e�ect. The general concern is that if such a shock to the system occurs, normally
it should a�ect all agents who are under the same contract. It involves two steps. First, two tests
are presented in order to determine if there is bunching at the upper limit of a given indicator. It
this is the case, for this speci�c indicator we can establish a set of agents that will not react to a
variation in the reward per unit of e�ort in other tasks. These agents, who bunch themselves above
UL, constitute a control group that motivates a di�erence-in-di�erences (DiD) approach (Equation
15 below). As a treatment group, agents that originally reported a level of output below the kink
point UL are selected.

In the subsections below, the motivation and identi�cation arguments for the DiD are discussed
�rst, and the tests for bunching afterwards.

3.1 Test Speci�cation

Our object of interest is the sign of C12. According to proposition 1, the sign of C12 is the same as
the sign of de1da2

. In this section, we explain how we can use data from a random sample of agents to

estimate the sign of de1da2
(and hence the sign of C12).

Assume that we have available a random sample of N agents, observed consecutively for three
time periods (t = 1,2,3). For each agent and time period we observe their task 1 output, that is,

{x1it}N,3i=1,t=1. Assume that the payment function for output x1 is exactly as (8) and is the same in
the three time periods. On the contract, assume that the piece rate for task 2 output is the same
in the �rst two time periods, but changes in the third time period: a2t=a

′

2 if t = 1, 2; and a2t=a
′′

2

if t = 3. Without loss of generality, we assume that a
′′

2<a
′

2.
We will represent agent i's observed level of task 1 output at time t by:

x1it = e∗1 (a2t, z(i)) + θ1i + λ1t + ε1it, (9)

of the presense of kinks on income taxes.
10For the uniform example in Figure 2, this means that the maximum value of e1 will fall, but the density at any

point will be larger (h̄(e1) > h(e1) for e1 ∈ [UL, ē1(zmax)]). See the example in the Appendix for more details.
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where e∗1 (a2t, z(i)) represents agent i's e�ort choice on task 1 when he faces a2t as task 2 piece
rate, and z(i) is agent i's e�ciency parameter.11We allow for the measured level of x1it to di�er
from the agent's optimal choice due to a agent �xed component, θ1i, a time component common
across agents, λ1t, and an independent and identically distributed random error term ε1it, which
exhibits zero mean and �nite variance.

Using the above, the change in agent i's observed task 1 output between the third and second
time period is given by:

x1i3 − x1i2 = e∗1 (a′′2 , z(i))− e∗1 (a′2, z(i)) + λ13 − λ12 + ε1i3 − ε1i2,

where we are using that the task 2 piece rate, a2t, changed from a
′

2 to a
′′

2 between these two
time periods. We will specialise the above expression according to whether the agent's e�ciency
parameter, z(i), is such that z(i) ∈ [z, z̄], and hence agent i's optimal e�ort corresponds to the kink
(e∗1 = UL), or when z(i) < z, and hence the exerted e�ort is higher. Moreover, we assume that a

′

2,
and a

′′

2 are su�ciently close, so that e∗1 (a′2, z(i)) = e∗1 (a′′2 , z(i)) = UL if z(i) ∈ [z, z̄] (see proposition
2). This means that e∗1 (a′′2 , z(i)) − e∗1 (a′2, z(i)) = 0 for the group of agents for which z(i) ∈ [z, z̄].
Hence, we have that:

x1i3 − x1i2 = λ13 − λ12 + ε1i3 − ε1i2 if z(i) ∈ [z, z̄] (10)

x1i3 − x1i2 = e∗1 (a′′2 , z(i))− e∗1 (a′2, z(i)) + λ13 − λ12 + ε1i3 − ε1i2 if z(i) < z (11)

Taking expectations of (10) and (11) over the relevant group of agents, and subtracting one from
the other, we have that:

∆=Eiε{i:z(i)<z}[x1i3 − x1i2]− Eiε{i:z(i)∈[z,z̄]}(x1i3 − x1i2) = Eiε{i:z(i)<z}[e
∗
1 (a′′2 , z(j))− e∗1 (a′2, z(j))]

(12)
.

Note that the left hand side of (12), Eiε{i:z(i)<z}[e
∗
1 (a′′2 , z(j)) − e∗1 (a′2, z(j))], is the discrete

approximation to (- de1da2
) (averaged over the set of agents i for which z(i) < z), whose sign is the

same as the sign of C12, our object of interest, and hence the sign of C12.
12 We can estimate the

sign of Eiε{i:z(i)<z}[e
∗
1 (a′′2 , z(j)) − e∗1 (a′2, z(j))], by estimating the sign of the coe�cient γ1 in the

following di�erence-in-di�erence regression:

x1i3 − x1i2 = γ11(z(i) < z) + vijt (13)

which implicitly uses the idea that those agents whose z(i) is between [z, z̄] can be used as a control
group, because they choose to be at the kink of the payment function of x1and hence are insensitive
to small changes in a2, the piece rate of the other task: x2.

A problem with implementing (13) is that neither z(j) nor z will generally be observable to the
econometrician. To address this problem, one could estimate the following regression di�-in-di�
regression:

11For ease of notation, we do not make explicit that the agent's optimal choice of task 1 e�ort, e∗1 (·), also depends
on the payment function of x1 as well as agent i′s cost function. These elements are assumed to be constant along
the sample period.

12Note that we place a minus in front of de1
da2

because we assumed that a′′2<a
′
2.
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x1i3 − x1i2 = β11(x1i2 < UL) + v′ijt (14)

where we are using the idea that those agents whose z(i)< z are those that have a output level
below the kink (x1i2 < UL), because the individuals that choose to produce at the kink (UL) are
those with z(i) ∈ [z, z̄]. While it is feasible to estimate (14), a problem is that x1i2 depends on the
random component ε1,i2, which introduces a bias due to mean reversion. That is, there might be
agents for which e∗1i2 > UL but due to a large negative transitory shock, ε1,i2 < 0, they end up
with x1i2 < UL. In the following time period, t = 3, we expect x1i3 to be larger or equal to UL,
even if a2twas the same in both t = 2 and t = 3. To net out this mean reversion bias, we need to
estimate the following regression:

x1it − x1it−1 = α11(x1it−1 < UL) +α21(t = 3) +α31(x1it−1 < UL) · 1(t = 3) + v′′ijt, t = 2, 3 (15)

where the estimate of α1 absorbs the mean reversion e�ect, and the sign of the estimate of α3

will have the same sign as Eiε{i:z(i)<z}[e
∗
1 (a′′2 , z(j))− e∗1 (a′2, z(j))], and hence the same sign as C12.

An additional characteristic of payment systems is that groups of tasks might share important
characteristics which make their output to be correlated beyond the cost function. In the case of
QOF, clinical indicators are grouped in areas given by speci�c pathologies and domains of care
(e.g. diabetes, chronic heart disease). For all indicators j and h which are part of a set J , we
can allow cov(vjit, vhit) 6= 0. This is implemented using seemingly unrelated regressions (SU)R and
augmenting the econometric model in order to cover the entire domain of xj . In order to implement
the SUR system of equations, each of them have to rewritten as follows:

xjit − xjit−1 = α11 {xjit−1 ∈ [UL− 10, UL)}+ α21 {t = 3}+ α31 {xjit−1 ∈ [UL− 10, UL)} · 1 {t = 3}
+α41 {xjit−1 ∈ [0, UL− 10)}+ α51 {xjit−1 ∈ [0, UL− 10)} · 1 {t = 3}
+α61 {xjit−1 ∈ (UL+ 5, 100]}+ α71 {xjit−1 ∈ (UL+ 5, 100]} · 1 {t = 3}+ vjit

where the additional terms correspond to the excluded domains for the given indicator. The
censoring is done in this format as there are practices which are located close to the kink for
some indicators but not for others. Thus, restricting the sample to only those practices which are
always near the kink might induce particular selection of the sample in terms of relevant unobserved
characteristics.

3.2 Detection of Bunching

It is necessary to construct a counterfactual distribution of achievement in order to detect the
existence of bunching. First, we consider the basic strategy for bunching developed by Kleven
[2016]: �t a parametric model on the observed distribution excluding an interval around UL, and
compare it with the observed distribution. Moreover, if �nancial rewards play a big role in e�ort
allocation, they will a�ect the entire shape of the distribution above UL, not only an interval
around the threshold. For this reason, we borrow a concept from regression discontinuity design.
Essentially, if agents' e�ort is the main driver of achievement, this will produce not only bunching
at UL but a discontinuity on the density at that point. By running a standard McCrary [2008]
test, we can determine if this is the case for a given estimator without imposing an assumption on
the endogenous shape of the density.
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In both exercises, our output variables are the histograms of the indicators. For this purpose
we de�ne bins on achievement following McCrary's procedure (x̃h) and count the number of agents
in each bin (nhj).

13

Bunching strategy We �t restricted cubic splines on the histogram excluding the interval
[ULj , ULj + L].14 This strategy essentially splits the domain into segments de�ned by K knots
(joint points) in order to �t the histogram (nhj) of indicator j with a piece-wise cubic polynomial in
the middle segments, and a linear function in the �rst and last ones. It requires the transformation

of the domain variable (the midpoint of the bins, x̃h) into K − 1 constructed variables
(
X

(k)
jh

)
that

ensure that the resulting function's �rst and second derivatives are the same.15 Such variables are
included in the linear expression presented in Equation 16 which also considers dummy variables
that indicate the presence of an excluded bin (1 {x̃h = l} , ∀l ∈ [ULj , ULj + L]). The error term,
ujh, is assumed to be i.i.d. and normally distributed.

njh =

K∑
k=1

ωkX
(k)
jh +

UL+L∑
l=UL

γl1 {x̃h = l}+ ujh (16)

After the vector of parameters {ω, γ} is estimated, the counterfactual density is the predicted

value of this equation without the dummies for the excluded range's contribution: n̂jh =
∑K
k=1 ω̂kX

(k)
jh .

Then, the excess number of observations that bunch above UL relative to the calculated counter-
factual is the di�erence between the observed and counterfactual histograms in the excluded range.
This is equivalent to the sum of the omitted dummies γ:

b̃j =

UL+L∑
l=UL

γ̂l =

UL+L∑
l=UL

(njh − n̂jh)

Following Chetty et al. [2009], we compare the amount of excess bunching with the average
density per 1 pp. in the excluded range

bj =
b̃j

1
L+1

∑UL+L
l=UL n̂jh

In case there is bunching, the estimated bj overestimates the amount of it. The reason is that
it does not consider that some of the bunched observations in the interval [ULj , ULj + L] should
be above ULj + L in the counterfactual distribution, as predicted by the model.16 As our goal is

13More precisely,

njh =

N∑
i=1

1

{
x̃h − x̃h−1

2
≤ xij <

x̃h+1 − x̃h
2

}
, x̃h ∈ {0.5, 1, 1.5, ..., 99.5}

14While Kleven [2016] recommends polynomials, such functions might produce poor approximations in certain
cases [Harrell, 2015, Chap 2.4.2]. Spline interpolation is a parametric approach that is as easy to implement as a
polynomial, without several of its limitations.

15The procedure was implemented in STATA 13 using mkspline command, using 5 to 7 knots determined by
percentiles recommended in Harrell [2015, Chap 2.4.6].

16Chetty et al. [2009] correct for this using an iterative procedure in which the area above ULj + L is arti�cially
increased in such a way that the area under both the observed and counterfactual densities is the same.
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to determine whether or not there is bunching, we perform a joint signi�cance test of the omitted
dummies from Equation 16:

H0 :

UL+L∑
l=UL

γ̂l = 0 (17)

RDD strategy In the context of the regression discontinuity design (RDD), McCrary [2008]
introduced a test for the continuity of the log-density g (x) at a given point:

ι = ln lim
x̃↓UL

g (x̃)− ln lim
x̃↑UL

g (x̃)

The basic idea behind it is that if a treatment were assigned according to being above or below
such a point, individuals would try to `choose' their position in the domain in order to obtain
or avoid the treatment. Such self-selection would induce a discontinuity on the density. In the
bunching literature a discontinuity is not necessary as it allows for a noisy relationship between
individual choices and observed outcomes. However, if such a noise is not present, the excess of
density at one point will induce a drastic change in the density at such a point.

The estimation of the jump on the log-density, î, is undertaken following McCrary's procedure.
First, the bin size is determined according to the standard deviation of the indicator and the total
number of indicators. Second, a bandwidth is selected based on the non-parametric estimator
literature.17 Given the bandwidth, local linear regressions are �tted to both sides of UL. Finally,
the estimator tests whether the �tted function is continuous at UL.

3.3 The importance of bunching

The presence of the kink at UL is essential for the test. If there were no corner solution near
this point, the expression in Equation 12 would deliver misleading results. From Equation 6, and
assuming as before that the sole source of heterogeneity is the e�ciency parameter z, we can derive
the predicted sign of Equation 12 if the UL does not produce bunching. As shown in Figure 2,
a higher level of z implies a higher level of e1. As a result, when we compare the e∗1 response to
variation in a2 for an agent with high x1 with one with low x1, we are comparing an agent with a
high vs. low value of z. Then, the essential question here is how de1

da2
changes along z. Equation

18 answers that question, and shows that its sign is determined by the sign of C12, just like the
derivative itself. For substitutes (C12 > 0), the derivative is negative ( de1da2

< 0) and becomes even

more negative with higher values of the productivity parameter
(
d2e1
dzda2

< 0
)
. For complements the

opposite is true.

d2e1

dzda2
= − C12

C11C22 − C2
12

(18)

Equation 18 has a strong implication for the test described above. Essentially, if the sorting is
based on overall productivity, z, and there is no bunching, the term ∆ presented in Equation 12 will
produce a result that is opposite to the test result. In order to illustrate this, let us compare the

17In a few cases, the suggested optimal bandwidth is beyond the domain of the indicator (i.e. upper limit above
100%). In such case, we set the bandwidth to be equal to 100− UL.
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response of two practices, one below UL with a productivity z and the other above such a cut-o�
with z̄. The sorting of e∗1 implies that z̄ = z + ι, where ι > 0. As shown below, if we approximate
Equation 12 with derivative, it is clear that the sign of ∆ is the same as the sign of C12, exactly
the opposite result from the one stated in the test description.

∆ = Eiε{i:z(i)<z}[x1i3 − x1i2]− Eiε{i:z(i)∈[z,z̄]}(x1i3 − x1i2)

≈ de1(z)

da2
− de1(z̄)

da2

= − z · C12

C11C22 − C2
12

+
z̄ · C12

C11C22 − C2
12

= (z̄ − z)
C12

C11C22 − C2
12

=
ι · C12

C11C22 − C2
12

The previous derivation was based on particular sorting with respect to overall e�ciency z.
However, sorting might be along other dimensions so no reliable test can be derived based on such
a di�erence. For instance, if heterogeneity is only based on the e�ciency of task 2, ∆ might always
be negative regardless of the sign of C12. See the example in Appendix B.1 for more details.

4 An application: The Quality and Outcomes Framework

4.1 Background

The program that we analyse, the Quality and Outcomes Framework (QOF), was introduced in
2004 as part of major reform with the aim of improving service and reducing inequality in the
quality of care received. It is a �nancial reward system for achieving a set of administrative and
clinical goals. The level of achievement of these goals is monitored by a regional commissioner.
Every year, the NHS and the physicians trade union, the British Medical Association, negotiate
which indicators should be included and how much money should be paid for each one. Rewards
are de�ned according to a point system, which is based on indicators. Administrative indicators are
usually binary questions, where the practice obtains all of the points assigned to an indicator if a
certain requirement is ful�lled. On the other hand, most clinical indicators are a non-linear function
of the proportion of patients that received a certain standard of care. This will be explained in
detail in the next section. Changes to the system have been proposed by the National Institute for
Health and Care Excellence (NICE), but still have to be negotiated by the interested parties. These
indicators are one of the most signi�cant contributions of the program, as they provide an image of
the quality of primary care services that was not available before. All the information is published
yearly by the NHS at GP practice level and is the main source of data for the present study.18

Clinical indicators are related to management of chronic diseases and public health concerns.
They cover chronic patients that require speci�c treatments such as those with coronary heart
disease, heart failure or diabetes. Moreover, it involves lifestyle advice for smoking, obesity and

18Currently date is archived by NHS Digital at http://digital.nhs.uk/qof.
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primary prevention of cardiovascular diseases in general. Since their introduction, several areas
have been removed or introduced or indicators replaced.

Analysis of multitasking on the QOF starts with the introduction of the system. The �rst order
concern was to determine whether the programme had a negative impact on unmeasured (thus,
unrewarded) indicators of care, one of the possible outcomes predicted by Holmstrom and Milgrom
[1991] and Baker [1992]. Sutton et al. [2010] studied a panel of medical records collected before and
after the introduction of the programme in Scotland, which included both rewarded and unrewarded
outcomes. They claim that after the introduction of the programme there was an improvement in
record-keeping for both type of outcomes with respect to the pre-programme trend, but this was
larger for those rewarded measures. This was the case for recordings on blood pressure, cholesterol
and smoking, which were rewarded, against BMI and alcohol consumption, which were not. Doran
et al. [2011] did a similar exercise for a sample of practices in England, but in this case they had
access to prescription and biomarkers data, and they obtained similar results. In both studies,
as unrewarded measures are a�ected by the reallocation of e�ort generated by the introduction of
rewards, the identi�cation of the e�ects of multitasking relies on the validity of using extrapolated
pre-treatment trends as a counter-factual. This has also motivated theoretical work on the optimal
design of the system. such as Eggleston [2005] and Kaarboe and Siciliani [2011].

As the QOF is adjusted almost every year, a second generation of the analysis followed these
innovations. A �rst set of changes was introduced in 2005/06, where the payment thresholds were
revised for some indicators making it more di�cult to achieve the maximum number of points.
Feng et al. [2015] compared the evolution of the modi�ed and unmodi�ed indicators in Scotland,
and showed that performance increased for the a�ected measures.

A �nal element to consider is gaming of the system. The main concern is called exception
reporting for clinical indicators, which consists of declaring that a patient should not be treated
according to the QOF guidelines due to speci�c health conditions. By increasing the number of
excepted patients, the relevant indicator will increase without providing extra services. Gravelle
et al. [2010] showed that GP practices exempt relatively more patients from being considered for
some of the clinical indicators if the overall achievement in the previous year was below UL, than if it
was above this threshold. For our purposes, cheating implies that some practices with productivity
z0 − η would report having productivity z0. This would be a problem for our estimates if those
cheating above UL adjusted their reported e�ort in response to changes in the price of alternative
tasks.

Panel A of Table 1 presents the number of practices in the �nancial years 2009, 2010 and 2011
and their average number of patients (list size). There are around 8000 GP practices covering on
average 7000 patients. Panel B shows the mean achievement per domain in each year, which is
very close to 100% in all years. The big increase from 2010 to 2011 is due to the removal of some
of the indicators, which will be discussed in the next section. Panel C presents the total clinical
points (2009) assigned to those conditions with the highest prevalence in the population, according
to the QOF data reports. Such points assignments provide an idea on the areas where the NHS
considered it a priority to improve and standardize health care. In 2009, diabetes was the most
rewarded clinical area with 100 points out of 697 available for the clinical indicator, followed by
hypertension and CHD. While these are also some of the most common chronic conditions, relevance
is not the sole criteria. For instance management of new cases of depression in the previous years
received more points than asthma, even though the latter was the second most common chronic
disease after hypertension.
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Table 1: GP Practices and QOF Descriptives

Panel A: Main Characteristics Average by practice and year
2009 2010 2011

Number of patients (list size) 6602.84 6691.28 6835.62
Number of practices 8305 8359 8124

Panel B: QOF achievement Average by practice and year
2009 2010 2011

Clinical 95.86 96.75 97.01
Organisational 96.34 97.36 96.37
Patient Experience 71.47 72.60 98.95
Additional Services 95.35 97.13 97.02
Total 93.69 94.66 96.91

Panel C: Selected Raw Prevalences and QOF points for 2009

Points Mean Std Dev
Diabetes † 100 4.28 1.85
Hypertension 81 13.53 4.79
Asthma 45 5.95 2.29
Coronary Heart Disease 87 3.45 1.49
Depression new cases † 53 0.76 0.80

Notes: Own calculations based on QOF data published in NHS Digital. † Diabetes raw prevalence is underestimated as it is calculated
as the number of individuals aged 17 and over with diagnosed types I or II, over the total list size (without age distinction). New cases of
depression are those patients diagnosed with the disease during the last �nancial year (April 1 to March 31).

4.2 Payment system

In our analysis we will consider that for a GP practice, the marginal bene�t of exerting e�ort on a
task is a linear function that involves both altruism and monetary payments. Hence, the marginal
reward above UL for task j, which we called ā1 in subsection (2.2), refers to the altruistic motive.19

Our analysis is based on data from the years 2009 to 2011. In 2009 and 2010, GPs could obtain up
to 1000 points: 697 for the clinical domain, 167.5 for the organizational domain, 91.5 for patient
experience, and 44 for additional services. In 2011, the clinical domain was reduced to 661 and
patient experience to 33, and 262 points were rellocated to organizational indicators. Points are
translated into income depending on the size of the practice and how common the underlying health
condition is in the practice's population.20

Monetary payments in the QOF are determined by achievement according to a set of indicators,
of which there are two main types: binary and ratios. The former gives a �xed amount of points if
a condition is attained.21 For instance, indicator BP1 gives 6 points if there is a register of people
with established hypertension, or 0 points if there is not. On the other hand, the awarded points
for ratio based indicators depend on the number of patients that should potentially receive a given
treatment (denominator), and the number of those who e�ectively receive it (numerator) during a

19The assumption of a linear bene�t to patients' welfare is relaxed by Kaarboe and Siciliani [2011]. In such
a scenario, the relevant function is not C(·) but B(·) − C(·), hence our results will signal complementarity or
substituiability of this function.

20See Appendix C for further details.
21Some administrative indicators also involve ratios. For instance, if there are less than 5 years of records of the

blood pressure of patients for 80% of the patients aged 45 and over (indicator RECORD17). In those cases, the
number of points allocated follow a binary allocation instead of a piece-rate reward system.
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speci�c period of time.22 For instance, the de�nition below for indicators DM17 and ASTHMA6.

Indicator ASTHMA6: The percentage of patients with asthma who have had an
asthma review in the previous 15 months

Indicator DM17: The percentage of patients with diabetes whose last measured
total cholesterol within the previous 15 months was 5 mmol/l or less

If achievement is below a lower limit (LLj) zero points are awarded, and if it above the upper limit
(ULj) the maximum amount of available points for indicator j are awarded.

Returning to the DM17 indicator example, the lower limit is LL = 40% and the upper limit
is UL = 70%. Then, if at least 70 out of every 100 patients with diabetes have total cholesterol
of 5mmol/l or less in the last 15 months, the practice will receive 6 points, the total number of
points allocated to this indicator. For ASTHMA6 there are 20 points available and it has the
same thresholds LL = 40% and UL = 70%. A graphic representation of such an assignment
rule is presented in the top diagrams in Figure 3, where the horizontal axis presents the possible
levels of achievement and the vertical axis represents the number of points that would be awarded
according to the QOF rules. Figure 3 also presents histograms for the actual achievement attained
by GP practices in each indicator for the 8301 practices in the 2009/10 �nancial year.23 From these
densities, there are two main points to remark on. First, there are few practices at or close to the
lower limit LL; and in fact, most of the distribution is above the UL. The mean achievement for
ASHTMA6 was 80% and 83% for DM17 (see Table 2). Less than 6% of the practices attained a
level below UL for ASTHMA6, while for DM17 this �gure was 2.5%. This is a common element
in all indicators that initially exceeded the expectations of the policymakers [Gregory, 2009]. As a
result, the main focus of this project is the role of the UL, hence the LL will not be discussed.

Second, as seen for the case of ASHTMA6, there is a sudden increase in the density at UL; in
other words, there is bunching above the threshold, which is an usual feature of the data produced
by discontinuities in budget constraints [Saez, 2010]. However, this is not the case for all of the
indicators. This seems to be the case of indicator DM17. According to the model discussed before,
this might be either because the �nancial reward has a minimum impact on the motivation of
physicians for accomplishing the goal or due to substantial noise between e�ort and the measured
achievement indicator.24 Another typical reason for not detecting bunching, the measurement error
[Kleven, 2016], is a problem for the present study as the QOF data are based on administrative
records for a large number of GP practices.

The other main source of variation in the data is time. Given that between 2009/10 and 2010/11
there were not changes to the QOF indicators, we can understand how achievement changes from
period to period. First, while achievement is persistent, there is substantial year-to-year variation.
The autocorrelation coe�cients are 0.54 for ASTHMA6 and 0.6 for DM17. Second, practices below
the UL in one year tend to increase their achievement in the next one. The mean variation for
ASTHMA6 is 11 pp. (SD = 14.8 pp.) for those practices below the UL in 2009, but it is -0.2 pp.

22In principle, payment is retrospective, but it is possible to obtain advance payments based on previous year's
performance, which are known as aspiration payments. More details are available from the BMA [2013].

23This includes practices without any cases of hypertension (5 practices) or asthma (8 cases). In those scenarios,
zero points are given.

24For instance, the sta� of the GP practice might have complete control in keeping records of tests or ensuring
that patients with a given condition are prescribed a given drug. However, ensuring that the levels of cholesterol
of their patients are within certain range, as required by indicator DM17 discussed before, might depend on many
actions not controlled by providers. Indeed, Fichera et al. [2014] present a game in which physicians and doctors
interact using their available tools, prescriptions and lifestyle, in response to QOF incentives.
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(SD = 6.7 pp.) for those above it. Such a mean di�erence is di�erent from 0 at the 99% level. The
same happens for DM17, but with a di�erence of means of 9 pp. Descriptive statistics for the other
indicators are presented in Table 7 in the appendix as the pattern is the same.

Figure 3: Points reward function and achievement density for Diabetes 17 (DM17) and ASHTMA6
(2009/10)
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Notes: Own calculations based on QOF data archived at NHS Digital.

Table 2: DM17 and ASTHMA3 QOF indicators descriptives for 2010/11

(1) (2) (3) (4) (5) (6)
Indicator UL Number E[xt] P[xt < UL] ρ(xt) E[xt − xt−1 E[xt − xt−1

|xt−1 < UL] |xt−1 > UL]

ASTHMA06 70% 8245 79.58 5.29 0.54 11.03 -0.19

DM17 70% 8245 82.73 2.43 0.60 8.70 -0.55

Notes: Own calculations based on QOF data. Number: Number of GP practices, including those with 0 elegible
patients for the given indicator. E[xt] : Average achievement per indicator. P[xt < UL] : Proportion of practices
with an achivement below UL. ρ(xt) : Correlation between 2010 and 2009 achivement.

4.3 The 2011 changes

While QOF is normally revised every year, there was no change between 2009 and 2010 after an
agreement between BMA and NHS during the H1N1 vaccination program [NHS Employers, 2010].

18



However, between 2010 and 2011 there were major changes that we will interpret as a net reduction
in the �nancial reward per unit of e�ort for part of the clinical indicators. This time-frame between
2009 and 2011 will be the main source of data for our analysis.

There are in total 1000 QOF points in all three years, but several indicators were either removed,
modi�ed or replaced by new ones. We have summarized them in three broad categories presented
in Table 3. First, those that imply a reduction in the �nancial reward per unit of e�ort; second,
those that we interpret as an increase in the marginal bene�t; and third, those whose nature is
ambiguous. A more detailed explanation of these changes is presented in Table 8 in the appendix.

In the �rst category (reduction in the �nancial reward per unit of e�ort), we include indicators
that are withdrawn,25 increases in UL (which will obviously �atten the slope of the reward func-
tion)26 or changes that consisted of a reduction in the number of points allocated to the indicator.
In total 143 of the original clinical points are a�ected. A di�erent type of change also implied
a reduction in the �nancial reward per unit of e�ort: these were wording amendments in which
the goal de�nition changed to require either additional tasks or reduce the reference time of the
indicator.

The second category (ambiguous change) covers several word amendments that are not straight-
forward to classify. In these cases typically a more precise de�nition of the goal to be accomplished
is accompanied by additional points in compensation. In total 51 of the original points are in this
category.

The third category (increase in the �nancial reward per unit of e�ort) includes new indicators
as well as old ones with goals that are easier to achieve. The new indicators, covering 12 points,
refer to tasks that were not �nancially rewarded before. Also, for one indicator (17 points) the new
wording relaxed the goal de�ned in the original version.

As we can see, in terms of clinical indicators, the total amount of points related to a reward
drop are larger than those associated with an increase, even if we consider all ambiguous changes as
increases. Hence, we interpret the overall changes in 2011 as an overall reduction in the marginal
payment per unit of e�ort.

Administrative indicators su�ered a major modi�cation in 2011. Two thirds of the patient

experience domain were removed in favour of the new quality and productivity indicators. Practices
had to agree a plan with the primary care organisations consisting of three main goals for prescribing
(28 points), outpatient referrals (21 points) and emergency admissions (47.5 points). The exact
indicator de�nition and its upper threshold was de�ned at local level. The objective of the indicators
was to reduce costs for the PCT by improving the cost-e�ciency of prescribing and by treating more
patients at primary care level, reducing both referrals and emergency admission rates.

For the reasons given above, we consider that the main objective of the changes was to tighten-
up the requirements for obtaining rewards, at least on the clinical side. We will not discuss the
administrative indicators, given that almost an entire domain was replaced with an other: the
perceived time for getting an appointment was replaced with meetings related to prescribing and
other supervised improvement plans designed by the PCT. Because these are administrative tasks,
we assume that they were not carried out by doctors themselves and hence that they do not alter

25Clinical retired indicators were almost a requirement for measuring other QOF indicators. For instance, indicator
CH5 was about having a recent blood pressure record for patients who su�ered from coronary heart disease but CHD6
rewards practices for keeping the blood pressure of these patients controlled.

26See Equation 25 in the appendix. While the initial proposal was to rede�ne the UL and make them a function
of the underlying indicator distribution in 2011 (match the 75th percentile), the negotiations delivered a slow-paced
plan. By 2011 two ULs had increased by one pp. However in 2012 both the lower and upper limits were increased
by between 4 to 10 pp. for 13 indicators [Doran et al., 2014].
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Table 3: Changes in QOF 2011 with respect to 2009-2010

Panel A. Clinical Indicators

Price

Interpretation

(Total Points)
Status Description Points

Reduction
(143 to 87)

Withdrawn No longer rewarded tasks 32
Points reduced Number of assigned points per indicator was

reduced.
26 to 22

Upper Limit
Increased

Increase on UL 22

Replacement I New wording with more strict de�nition of a
goal or a reduced time-frame for
accomplishing it

18

Replacement II Decrease in points and new wording is more
detailed

45 to 25

Ambiguous
(51 to 59)

Replacement
III

Harder to accomplish or more detailed goals
but compensated with extra points

51 to 59

Increase
(29)

Replacement
IV

Reference cuto� relaxed 17

New New tasks to be rewarded 12
NA
(486)

Replacement V Similar or same wording, but expressed in
new units or highlight recent changes on
diagnostic procedures.

32

Unchanged No change on points, thresholds or wording 454

Panel B. Non-Clinical Indicators

Price

Interpretation
Status Description Points

Reduction Retirements No longer rewarded tasks 60.5
Increase New New tasks to be rewarded 96.5
NA Unchanged No change on either points or wording 242.5

Note: Authors' interpretation based on NHS Employers public documents.

the marginal cost of clinical e�ort.

5 Results

The results are presented in two steps. First, we assess the validity of the test by checking for a
discontinuity and/or for bunching at the upper limit (UL). Second, we test the sign of the response
on e�ort to a price drop in alternative tasks, on those indicators that were not a�ected by the QOF
2011 changes.

For the bunching analysis, we pool data from both years 2009 and 2010 and set 10 pp. an
estimation window below and above UL. We also discard the bins corresponding to 100%, which
is hard to �t with a continuous density function. Figure 4a presents a graphical representation
of the McCrary test for continuity on the density at UL for indicators DM17 and ASTHMA6,
our examples discussed in the previous section. Both graphs present the histogram (nhj), and the
�tted models to both sides of UL . For ASTHMA6 there is clear evidence of the existence of a
discontinuity as the null hypothesis that both approximated log-densities are the same at UL is
rejected. In both cases the test suggest the presence of a discontinuity on the density at UL. For
DM17 such a null cannot be rejected at the 95% level, but it is at the 90% level. Table 4 presents
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this exercise (Column 4) for each indicator (rows) given a McCrary's default calculations for bin
size (Column 2) and bandwidth (Column 3).

The calculation of the amount of excess bunching for both indicators is presented in Figure
4b. Apart from the histogram (nhj), these �gures present the �tted model including dummies γ
covering [UL,UL + 5 pp.] (orange line) and excluding them from the prediction (black line). For
DM17, the di�erence between the histogram and the counterfactual di�erence is of 42% of the
average density in the interval; and for ASTHMA6 it is 107%. Both estimates are signi�cant at
the 95% level. However, such estimates are sensible to the number of knots in the spline, the
excluded range size L, and the estimation window. Varying the con�guration of such parameters
we obtain very di�erent point estimates. Columns 5 to 9 in Table 4 present several con�gurations
of an excluded range from L = 2 to L = 7, 5 and 7 knots, and estimation windows of 10 and 20.
For DM17 an estimate of b between -90% and 43%; and for ASTHMA6 it is around 60% to 417%.
Despite such large di�erences, the null in Equation 17 is not rejected for ASTHMA6. On the other
hand, for DM17 the null is rejected in 3 out of 5 of the explored speci�cations.

Given the results stated above, there is clear evidence that the upper limit has an e�ect on
practices, e�ort allocation for ASTHMA6, but this is not as clear for DM17. Therefore the test is
likely to be informative for the �rst but not the second indicator. Table 4 also suggests that for
indicators DM22,27 SMOKE328 and THYROI0229 there is no evidence of bunching. Table 9 in the
appendix presents de�nitions and graphs equivalent to Figures 4a and 4b for these indicators.

Table 4: QOF indicators corner test

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indicator UL BS BW DC Test
w=10,
h=2,
k=5

w=10,
h=3,
k=5

w=10,
h=3,
k=7

w=20,
h=3,
k=5

w=20,
h=5,
k=5

AF03 90 0.06 6.38 1.82 ∗∗∗ 123.1 ∗∗∗ 242.4 ∗∗∗ 183.3 ∗∗∗ 176.9 ∗∗∗ 345.4 ∗∗∗

[30.72] [ 6.53] [10.96] [ 6.11] [ 9.34] [ 9.73]
AF04 90 0.19 10.00 2.50 ∗∗∗ 171.4 ∗∗∗ 184.7 ∗∗∗ 237.4 ∗∗∗ 137.1 ∗∗∗ 183.7 ∗∗∗

[26.28] [ 4.10] [ 3.88] [ 2.67] [ 3.82] [ 3.17]
ASTHMA03 80 0.11 10.00 1.76 ∗∗∗ 200.5 ∗∗∗ 154.5 89.1 150.4 ∗∗ 295.5 ∗∗∗

[20.65] [ 3.31] [ 1.41] [ 0.51] [ 2.13] [ 3.32]
ASTHMA06 70 0.13 6.05 0.92 ∗∗∗ 49.3 ∗∗∗ 107.4 ∗∗∗ 57.1 ∗∗∗ 125.4 ∗∗∗ 416.9 ∗∗∗

[12.28] [ 4.68] [ 9.33] [ 5.19] [ 6.36] [19.66]
ASTHMA08 80 0.14 10.00 1.93 ∗∗∗ 205.8 ∗∗∗ 254.8 ∗∗∗ 193.4 256.6 ∗∗∗ 492.7 ∗∗∗

[27.49] [ 4.98] [ 3.42] [ 1.59] [ 5.11] [ 8.02]
BP5 70 0.10 5.26 0.31 ∗∗∗ 13.9 ∗ 37.5 ∗∗∗ 42.5 ∗∗∗ 24.1 ∗∗∗ 18.8 ∗∗

[ 3.60] [ 1.92] [ 3.99] [ 2.83] [ 3.94] [ 2.32]
CANCER03 90 0.28 10.00 1.41 ∗∗∗ 160.2 ∗∗∗ 235.6 ∗∗∗ 195.5 ∗∗ 229.2 ∗∗∗ 352.1 ∗∗∗

[26.48] [ 3.36] [ 4.05] [ 2.44] [ 6.30] [ 5.83]
CHD08 70 0.10 6.59 0.30 ∗∗∗ 37.8 ∗∗∗ 39.1 ∗∗ 68.8 ∗∗ 14.7 -56.2 ∗∗∗

[ 2.59] [ 4.27] [ 2.10] [ 2.54] [ 0.85] [-2.91]
CHD09 90 0.05 4.57 1.20 ∗∗∗ 77.1 ∗∗∗ 136.2 ∗∗∗ 85.4 ∗∗∗ 57.7 ∗∗∗ 208.4 ∗∗∗

[18.55] [ 8.68] [11.54] [ 5.81] [ 5.48] [ 9.06]
CHD10 60 0.15 7.69 1.30 ∗∗∗ 91.9 ∗∗∗ 128.3 ∗∗∗ 112.7 ∗∗∗ 112.4 ∗∗∗ 237.5 ∗∗∗

[12.46] [ 7.18] [ 8.89] [ 4.60] [ 6.19] [ 9.17]
CHD12 90 0.08 4.82 1.21 ∗∗∗ 118.2 ∗∗∗ 222.2 ∗∗∗ 153.4 ∗∗∗ 161.5 ∗∗∗ 323.7 ∗∗∗

[22.56] [10.79] [20.70] [17.18] [16.06] [14.33]
CKD02 90 0.04 3.42 0.83 ∗∗∗ 289.9 ∗∗∗ 141.9 ∗∗∗ -1279.0 ∗∗∗ 398.2 ∗∗ -166.1 ∗∗

[ 3.52] [ 6.71] [ 2.83] [ 5.35] [ 2.30] [-2.02]
CKD03 70 0.13 7.73 0.69 ∗∗∗ 82.9 ∗∗∗ 136.9 ∗∗∗ 100.9 ∗∗∗ 164.0 ∗∗∗ 343.5 ∗∗∗

[16.24] [10.73] [11.64] [ 6.81] [11.02] [18.86]
CKD05 80 0.16 10.00 2.40 ∗∗∗ 466.9 ∗∗∗ 249.9 83.9 243.7 ∗ 413.4 ∗∗

Continued on next page

27Based on having a record of glomerular �ltration rate (GFR), which measures kidney function.
28Proportion of individuals a�ected by several chronic conditions who are referred to smoking cessation advice.
29Record on thyroid function tests.
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Table 4: (Continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indicator UL BS BW DC Test
w=10,
h=2,
k=5

w=10,
h=3,
k=5

w=10,
h=3,
k=7

w=20,
h=3,
k=5

w=20,
h=5,
k=5

[18.73] [ 3.21] [ 1.11] [ 0.29] [ 1.72] [ 2.48]
CKD06 80 0.22 8.89 0.85 ∗∗∗ 77.3 ∗∗∗ 113.6 ∗∗∗ 109.9 ∗∗∗ 109.8 ∗∗∗ 259.6 ∗∗∗

[16.84] [ 5.82] [ 5.70] [ 3.40] [ 5.11] [ 8.42]
CVD01 70 0.28 10.00 1.11 ∗∗∗ 164.8 ∗∗∗ 254.3 ∗∗ 200.1 179.7 ∗∗ 499.0 ∗∗∗

[13.83] [ 4.00] [ 2.32] [ 1.34] [ 2.01] [ 5.17]
CVD02 70 0.22 10.00 1.02 ∗∗∗ 97.4 ∗∗∗ 118.1 ∗∗ 97.6 79.6 ∗ 71.4

[10.77] [ 3.84] [ 2.50] [ 1.40] [ 1.78] [ 0.89]
DEM02 60 0.19 10.00 2.31 ∗∗∗ 366.9 ∗∗∗ 359.9 ∗∗∗ 717.4 ∗ 282.1 ∗∗ 338.2

[13.60] [ 4.56] [ 4.71] [ 1.92] [ 2.40] [ 1.30]
DM2 90 0.06 4.22 0.20 ∗∗ 4.9 -34.2 ∗∗∗ 39.3 ∗∗∗ -106.8 ∗∗∗ -141.5 ∗∗∗

[ 2.33] [ 0.53] [-3.78] [ 3.16] [-10.34] [-6.49]
DM10 90 0.12 4.98 0.74 ∗∗∗ 48.9 ∗∗∗ 108.5 ∗∗∗ 57.6 ∗∗∗ 58.9 ∗∗∗ 214.8 ∗∗∗

[13.74] [ 4.80] [ 9.03] [ 6.26] [ 5.46] [ 9.35]
DM13 90 0.14 4.95 0.75 ∗∗∗ 74.0 ∗∗∗ 175.6 ∗∗∗ 113.8 ∗∗∗ 159.1 ∗∗∗ 400.7 ∗∗∗

[16.51] [ 5.69] [11.93] [14.40] [12.83] [19.51]
DM15 80 0.13 10.00 1.45 ∗∗∗ 306.7 ∗∗∗ 223.7 ∗ 172.0 194.6 ∗∗ 262.3 ∗∗∗

[19.09] [ 4.69] [ 1.83] [ 0.84] [ 2.57] [ 2.70]
DM17 70 0.09 4.86 0.25 ∗ 0.0 42.4 ∗∗ 42.6 42.5 -93.2 ∗∗∗

[ 1.76] [ 0.49] [ 2.39] [ 1.60] [ 1.54] [-3.44]
DM18 85 0.09 5.60 0.46 ∗∗∗ 30.0 ∗∗∗ 27.7 ∗∗∗ 42.1 ∗∗∗ 14.5 ∗ 65.9 ∗∗∗

[ 6.41] [ 4.70] [ 3.08] [ 3.19] [ 1.90] [ 6.50]
DM21 90 0.12 5.30 1.07 ∗∗∗ 119.7 ∗∗∗ 222.1 ∗∗∗ 156.1 ∗∗∗ 186.2 ∗∗∗ 376.1 ∗∗∗

[22.39] [ 9.26] [17.40] [14.53] [15.90] [21.36]
DM22 90 0.05 4.21 0.27 ∗ 76.2 ∗∗∗ 34.1 601.1 ∗∗∗ -9.8 -143.7 ∗∗∗

[ 1.87] [ 5.44] [ 1.63] [ 5.28] [-0.32] [-2.82]
EPILEP06 90 0.11 8.54 1.38 ∗∗∗ 84.6 ∗∗∗ 66.9 ∗∗ 181.1 ∗∗∗ -3.9 -72.3 ∗

[19.48] [ 2.70] [ 1.99] [ 2.69] [-0.18] [-1.66]
EPILEP08 70 0.21 10.00 1.18 ∗∗∗ 145.7 ∗∗∗ 245.2 ∗∗∗ 208.6 ∗∗ 250.8 ∗∗∗ 288.7 ∗∗

[23.80] [ 4.44] [ 3.43] [ 2.15] [ 3.75] [ 2.33]
HF02 90 0.17 10.00 2.41 ∗∗∗ 222.9 ∗∗∗ 259.5 ∗∗∗ 257.5 ∗∗ 232.6 ∗∗∗ 336.4 ∗∗∗

[29.80] [ 3.90] [ 4.31] [ 2.65] [ 5.14] [ 6.12]
HF03 80 0.11 10.00 2.19 ∗∗∗ 399.7 ∗∗∗ 240.8 ∗ 246.3 221.1 ∗∗ 293.6 ∗∗

[21.12] [ 4.66] [ 1.72] [ 0.95] [ 2.40] [ 2.50]
HF04 60 0.19 10.00 2.51 ∗∗∗ 662.3 ∗∗∗ 675.1 ∗∗∗ -4475.9 ∗ 580.8 ∗∗ 274.0

[11.53] [ 3.67] [ 4.94] [ 1.92] [ 2.39] [ 0.68]
SMOKE03 90 0.04 3.15 0.14 -9.7 -91.0 ∗∗∗ 104.7 ∗∗∗ -165.7 ∗∗∗ -238.9 ∗∗∗

[ 1.17] [-0.58] [-6.60] [ 5.32] [-12.89] [-10.12]
SMOKE04 90 0.08 4.86 1.32 ∗∗∗ 132.9 ∗∗∗ 299.2 ∗∗∗ 165.9 ∗∗∗ 272.4 ∗∗∗ 662.6 ∗∗∗

[24.79] [ 9.08] [18.04] [14.88] [18.08] [26.30]
STROKE07 90 0.10 6.58 1.12 ∗∗∗ 98.1 ∗∗∗ 179.4 ∗∗∗ 125.2 ∗∗∗ 142.5 ∗∗∗ 308.2 ∗∗∗

[25.10] [ 6.41] [ 8.71] [ 4.76] [ 8.74] [11.01]
STROKE08 60 0.13 9.60 0.47 ∗∗∗ 89.9 ∗∗∗ 116.4 ∗∗∗ 114.5 114.5 ∗∗ 90.4

[ 4.25] [ 2.99] [ 2.85] [ 1.30] [ 2.49] [ 1.12]
STROKE10 85 0.11 7.79 0.98 ∗∗∗ 64.6 ∗∗∗ 103.9 ∗∗∗ 95.3 ∗∗∗ 113.3 ∗∗∗ 262.9 ∗∗∗

[17.87] [ 4.18] [ 5.84] [ 3.64] [ 7.16] [11.52]
STROKE12 90 0.07 5.96 1.51 ∗∗∗ 88.3 ∗∗∗ 155.6 ∗∗∗ 128.2 ∗∗∗ 84.2 ∗∗∗ 217.0 ∗∗∗

[24.03] [ 4.39] [ 5.91] [ 3.21] [ 3.75] [ 5.30]
STROKE13 80 0.19 10.00 2.32 ∗∗∗ 450.8 ∗∗∗ 267.3 ∗ 165.3 259.9 ∗∗ 455.9 ∗∗∗

[21.42] [ 5.27] [ 1.72] [ 0.68] [ 2.55] [ 3.52]
THYROI02 90 0.05 4.48 0.04 -20.3 ∗ -50.7 ∗∗∗ 33.8 -122.2 ∗∗∗ -144.6 ∗∗∗

[ 0.31] [-1.97] [-4.09] [ 1.35] [-10.19] [-5.84]

Notes: Own calculations based on QOF data. McCrary test on the continuity of the density at the threshold.
Optimal bin sizes (BS) and bandwidths (BW) for each indicator are chosen following McCrary implementation of
the test. Signi�cance: * 10%, ** 5%, *** 1%.

Table 5 presents the second part in which we estimate regression (15), where x1 refers to indica-
tors whose rewards remained unchanged throughout the three years that we consider (2009-2011).
We exclude from the analysis those indicators in which the test would not be not valid because
bunching was not detected. For each indicator (rows), the table reports the number of observations
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Figure 4: Testing for Bunching
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Note: In sub-�gure (a), the empirical densities to both sides of the threshold UL are smoothed using a local linear

regression within the given bandwidth of UL (vertical lines). These smoothed functions are presented with a 95%

CI. In sub-�gure (b), the empirical density is �tted with a restricted cubic spline based on 5 knots. Domain was

restricted to a 10 pp. window around UL, and the excluded range is [ULj , ULj + 5pp.]
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above and below the threshold within a 5 pp. window to both sides of the UL (Columns 1 and 2).
Such is the selected sample for estimating the parameters of regression (15): columns 3 to 5 of the
table presents estimates for α1, α2, and α3. In order to estimate the model, �rst di�erences with
respect to time are obtained for each GP practice between 2010 and 2011, and between 2009 and
2010. Such a variable is the outcome of the equation. We also construct a binary variable that
indicates whether the practice was below the UL in years 2009 and 2010 (1(x1j,t−1 < ULj)), and
another that indicates whether we are observing data from the variation 2010 to 2011 (1(t = 2011)).
The sample is restricted to a window of [UL− 10, UL+ 5]. In particular, we are interested in the
sign of α3. Given that we observed a net reduction in the marginal bene�t of alternative tasks, a

negative sign of α̂3 indicates a positive cross-derivative
(
de1
da2

> 0
)
which indicates that the analysed

task are complementary to the tasks a�ected by the 2011 changes. This does not mean that the
task is a complement of all modi�ed indicators, but that overall, the net response is equivalent to
complements. Another possibility is that the task is a substitute only of those tasks for which the
marginal reward was increased instead of reduced. This is less likely as the majority of changes
correspond to a decrease, rather than an increase, but we cannot rule out such a possibility.

We also note that, for some indicators, we might not be able to reject the hypothesis thatα3 = 0
because of lack of power. In particular, there are some indicators that have a very small number
of practices below the threshold. For instance, for HF04 there are only 45 practices below UL in
comparison with 669 above it.

On one hand, we �nd that AF03, AF04, ASTHMA06, CKD06, CVD02, DM10 and DM13
are complements of the overall modi�ed indicators: e�ort was reduced in response to the net
reduction in incentives in other indicators. The �rst (AF03), is the percentage of patients with
atrial �brillation (a rapid and irregular heartbeat) who are being treated with a anticoagulant
drug therapy, while the second (AF04) is the percentage of those patients who had their diagnosis
con�rmed by an specialist or with a specialised test. The third (ASTHMA06) is the percentage
of asthmatic patients who had a review of their disease progression in the last 15 months. The
fourth (CKD06) is the percentage of patients with chronic kidney disease who have a record for a
test that checks their kidney status. The �fth (CVD02) corresponds to those patients diagnosed
with hypertension who received lifestyle advice. The last two refer to diabetic patients: DM10 is
on having records of neuropathy testing (nerve disorders) and DM13 records of micro-albumuria
testing (kidney's status) for diabetic patients. On the other hand, DM18 is the only substitute
task identi�ed. This indicator is based on the proportion of diabetic patients who were immunised
against in�uenza.

Alternative estimation windows are considered in Table 6. In this table, each cell presented
is an estimate of α3 considering a sample of [UL − l, UL + k]. This table is restricted to those
cases in which the hypothesis α3 = 0 is rejected at least once. This means that Column 3 of
Table 5 corresponds to the fourth column (l = 10, k = 5) of Table 6. Estimates for AF04, CKD06,
CVD02 and DM13 are stable across the di�erent speci�cations. Table 10 in the appendix presents
de�nitions and graphs with the bunching test for these indicators.

The diabetes mellitus (DM) area su�ered several changes. There were changes in payments for
keeping blood pressure of patients controlled and on records of foot examination. Also, �nancial
rewards for keeping records of plasma glucose concentration, blood pressure and cholesterol were
removed. CVD02 is directly related to handling hypertense population, which is directly linked to
keeping track of such population. Given that both DM10 and DM13 are also records of recent tests,
it seems plausible that such tasks are complements. However, while the result is not robust to the
speci�cation, DM18 indicator seems to be working in the opposite direction. The reason for this
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might be that while we are talking about diabetic patients, here we are considering immunisation,
which is tasks relatively di�erent to all other cardiovascular care activities included in the QOF.

Neither the chronic kidney disease nor the atrial �brillation indicators were modi�ed in 2011.
Nevertheless, AF04 and CKD06 are a�ected by other indicators' changes. AF04 measures the
proportion of individuals diagnosed with ECG or by a specialist. CKD06 rewards keeping a record
of albumin creatinine ratio, which is a speci�c measure related to kidney disease.

Table 5: QOF indicators results SUR: Control: UL + 5 pp., Responsive practices: UL - 10 pp.

(1) (2) (3) (4) (5)
Descriptives † Estim. Regression Coe�cients Classif.

Indicator UL N N BELOW AFTER INTER
Below Above α1 α2 α3

AF03 90% 544 4287 0.039∗∗∗ 0.001 −0.009∗∗ Comp
(0.003) (0.001) (0.003)

AF04 90% 284 1630 0.047∗∗∗ −0.003∗∗ −0.013∗∗ Comp
(0.004) (0.001) (0.006)

ASTHMA03 80% 248 1449 0.044∗∗∗ −0.004 −0.008
(0.006) (0.003) (0.009)

ASTHMA06 90% 421 2143 0.050∗∗∗ −0.008∗∗∗ −0.016∗∗∗ Comp
(0.004) (0.002) (0.006)

ASTHMA08 80% 325 1984 0.042∗∗∗ −0.006∗∗∗ −0.013∗

(0.005) (0.002) (0.007)

BP5 70% 461 1406 0.029∗∗∗ −0.002 −0.004
(0.003) (0.002) (0.005)

CANCER03 90% 897 1768 0.027∗∗∗ −0.002 −0.007
(0.004) (0.002) (0.006)

CHD08 70% 265 761 0.039∗∗∗ −0.020∗∗∗ −0.009
(0.005) (0.003) (0.007)

CHD09 90% 528 4382 0.025∗∗∗ 0.001 −0.003
(0.002) (0.001) (0.003)

CHD10 60% 175 1066 0.048∗∗∗ −0.001 −0.005
(0.008) (0.003) (0.010)

CHD12 90% 1240 4434 0.024∗∗∗ −0.004∗∗∗ 0.003
(0.002) (0.001) (0.002)

CKD02 90% 58 717 0.048∗∗∗ 0.000 −0.005
(0.006) (0.003) (0.008)

CKD03 70% 1498 2384 0.021∗∗∗ 0.009∗∗∗ 0.003
(0.002) (0.002) (0.003)

CKD05 80% 152 695 0.047∗∗∗ −0.013∗∗∗ −0.007
(0.009) (0.004) (0.014)

CKD06 80% 1167 1938 0.039∗∗∗ −0.013∗∗∗ −0.020∗∗∗ Comp
(0.003) (0.002) (0.004)

CVD01 70% 400 744 0.037∗∗∗ −0.009 −0.003
(0.010) (0.007) (0.013)

CVD02 70% 245 593 0.073∗∗∗ −0.001 −0.041∗∗∗ Comp
(0.011) (0.006) (0.014)

DEM02 60% 102 542 0.085∗∗∗ 0.014∗∗ −0.045
(0.024) (0.007) (0.034)

DM2 90% 555 2852 0.031∗∗∗ −0.000 −0.003
(0.002) (0.001) (0.003)

DM10 90% 1448 3920 0.027∗∗∗ 0.001 −0.004∗∗ Comp
(0.002) (0.001) (0.002)

DM13 90% 2151 3755 0.024∗∗∗ −0.002∗ −0.006∗∗∗ Comp
(0.001) (0.001) (0.002)

DM15 80% 326 1093 0.034∗∗∗ 0.002 −0.009
(0.006) (0.003) (0.008)

DM18 85% 711 2295 0.023∗∗∗ −0.003∗∗ 0.008∗∗ Subs
(0.003) (0.001) (0.004)

DM21 90% 1585 3837 0.023∗∗∗ −0.002∗ 0.000
(0.002) (0.001) (0.002)

Continued on next page
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Table 5: (Continued)

(1) (2) (3) (4) (5)
Descriptives Estim. Regression Coe�cients Classif.

Indicator UL N N BELOW AFTER INTER
Below Above α1 α2 α3

EPILEP06 90% 489 2376 0.036∗∗∗ −0.004∗∗∗ −0.006
(0.004) (0.001) (0.005)

EPILEP08 70% 1139 1896 0.024∗∗∗ 0.013∗∗∗ −0.009∗

(0.004) (0.003) (0.005)

HF02 90% 463 1860 0.033∗∗∗ −0.000 0.001
(0.004) (0.001) (0.005)

HF03 80% 186 1223 0.043∗∗∗ −0.003 0.007
(0.008) (0.003) (0.011)

HF04 60% 75 367 0.118∗∗∗ 0.016∗ −0.026
(0.028) (0.009) (0.045)

SMOKE04 90% 950 4411 0.027∗∗∗ 0.001 −0.003
(0.002) (0.001) (0.003)

STROKE07 90% 1550 3947 0.022∗∗∗ −0.003∗∗∗ −0.003
(0.001) (0.001) (0.002)

STROKE08 60% 210 397 0.036∗∗∗ −0.011∗∗ 0.001
(0.008) (0.005) (0.011)

STROKE10 85% 904 2724 0.028∗∗∗ −0.002 0.003
(0.003) (0.002) (0.004)

STROKE12 90% 580 3735 0.034∗∗∗ −0.000 −0.003
(0.003) (0.001) (0.004)

STROKE13 80% 191 1116 0.035∗∗∗ −0.006∗∗ −0.009
(0.009) (0.003) (0.012)

Notes: Own calculations based on QOF data. BELOW: To have attained below the respective upper thershold in the �rst
year of the variation (2009 for 2009-2010 and 2010 for 2010-2011). AFTER: 2010 to 2011 variation. AFTER: Interaction
between INTER and AFTER. Clustered at partice-level standard errors in parenthesis, which are allowed to be correlated
between indicators of the same diagnostic area. † practices' descriptives are presented according to 2010 achievement,
within the 5 points window around UL . Signi�cance: ** 5%, *** 1%.
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Table 6: QOF indicators results: Multiple windows

Estimate of α3 under the sample in [UL− l, UL+ k]
Presents only indicators for which α3 = 0 is rejected in at least one speci�cation.

Entire interval Removing [UL− 1, UL+ 1]

k=5 pp. above UL k=3 pp. above UL k=5 pp. above UL k=3 pp. above UL

Indicator l=10 l=5 l=10 l=5 l=10 l=5 l=10 l=5

AF03 (UL=90) −0.007∗∗ −0.001 −0.007∗∗ −0.001 −0.009∗ 0.000 −0.009∗ 0.000
(0.003) (0.003) (0.003) (0.003) (0.005) (0.005) (0.005) (0.005)

AF04 (UL=90) −0.016∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.015∗∗∗ −0.023∗∗ −0.027∗∗∗ −0.023∗∗ −0.027∗∗∗

(0.006) (0.005) (0.006) (0.005) (0.009) (0.009) (0.009) (0.009)
ASTHMA06 (UL=70) −0.017∗∗∗ −0.009 −0.012∗ −0.005 −0.020∗∗ −0.010 −0.016∗∗ −0.006

(0.006) (0.007) (0.007) (0.007) (0.008) (0.009) (0.008) (0.009)
ASTHMA08 (UL=80) −0.015∗∗ −0.007 −0.013 −0.004 −0.019∗∗ −0.010 −0.017∗ −0.008

(0.008) (0.008) (0.008) (0.008) (0.009) (0.010) (0.009) (0.010)
CHD08 (UL=70) −0.012 −0.012 −0.016∗ −0.017∗ −0.017∗ −0.022∗∗ −0.022∗∗ −0.028∗∗

(0.008) (0.009) (0.008) (0.009) (0.009) (0.011) (0.010) (0.011)
CKD06 (UL=80) −0.021∗∗∗ −0.018∗∗∗ −0.018∗∗∗ −0.015∗∗ −0.021∗∗∗ −0.018∗∗∗ −0.017∗∗∗ −0.014∗∗

(0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006) (0.007)
CVD02 (UL=70) −0.040∗∗∗ −0.023 −0.037∗∗ −0.020 −0.061∗∗∗ −0.052∗∗ −0.055∗∗∗ −0.046∗∗

(0.014) (0.018) (0.017) (0.020) (0.016) (0.021) (0.018) (0.023)
DM10 (UL=90) −0.003 −0.006∗ −0.001 −0.004 −0.003 −0.007∗ −0.001 −0.005

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004)
DM13 (UL=90) −0.006∗∗∗ −0.005∗∗ −0.006∗∗ −0.005∗ −0.007∗∗∗ −0.005∗ −0.007∗∗∗ −0.005∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003)
DM18 (UL=85) 0.009∗∗ 0.007 0.008∗ 0.006 0.011∗∗ 0.008 0.010∗∗ 0.007

(0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.005) (0.005)
EPILEP08 (UL=70) −0.009∗ −0.013∗ −0.002 −0.005 −0.012∗ −0.020∗∗ −0.003 −0.010

(0.006) (0.007) (0.006) (0.007) (0.006) (0.008) (0.007) (0.009)
STROKE10 (UL=85) 0.009∗∗ 0.006 0.007 0.003 0.010∗∗ 0.005 0.008 0.003

(0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Notes: Own calculations based on QOF data. Clustered at practice-level standard errors in parenthesis.
Signi�cance: ** 5%, *** 1%.
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6 Conclusion
This paper introduces a test for complementarities/substitutions in the agent's cost function in a multitasking setting when
there is a two-part linear contract. It works by considering as a �control� group those agents who self-select into levels of
e�ort that corresponds to the �kink� in the reward function, that is, at the threshold where there is a sudden change in
the marginal bene�t for exerting e�ort in a given task. For these agents, there is a wedge between the marginal bene�t
and marginal cost of e�ort, and hence, small changes in incentives will not alter their e�ort allocation (and hence can be
used as a control group). The test consists of two steps: �rst, determining whether the kink produces �bunching� in the
distribution of achievement at the threshold, and if that is the case, a di�erence in di�erences estimator identi�es the desired
characteristic of the cost function.

As a case of study we have analysed a pay for performance scheme for family doctors in the UK, the Quality and
Outcomes Framework (QOF). We have shown that changes introduced in 2010/11, which we understand as a net price drop
in a set of modi�ed indicators, revealed that several indicators are in fact complements. This might be because most clinical
indicators refer to chronic patients, who not unusually have several co-morbidities.
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A Uncertainty

A common characteristic of multitasking models is the role of uncertainty.30 In particular, Holmstrom and Milgrom [1991]
discuss the role of using noisy signals for rewarding agents. Let us consider x1 = e1 + ε1, where ε1 is distributed according
to F (·), which is a twice di�erentiable CDF, with PDF f (·)which correponds to a symmetric unimodal distribution with
mean 0. Let us assume that uncertainty has an impact of −Ω < 0 on utility, which is considered here only because the
two-part contract of the QOF has this feature which might not be present in other pay-for-performance schemes, and which
will be discussed below in depth.31 Hence, we can write their problem as follows.

30For our particular application, the model without uncertainty is not necessarily too simplistic. This is because
the payment is based on the aggregate outcome of the doctor's patients, and hence the noise might be averaged out.

31This would be the case with preferences that exhibit absolute risk aversion η. For example:

max
e1,e2∈[0,1]

U = E

[
u(αB(e1, e2) + (T + φ(p1, e1 + ε1) + a2e2 −

1

z
C(e1, e2))

]
= E[−e−η(αB(e1,e2)+(T+φ(p1,e1+ε1)+ã1e1+a2e2)− 1

z
C(e1,e2))] (19)

With a linear tari� φ1(x1) = p1x1 = p1e1 +p1ε1 the problem can be expressed in terms of the certainty equivalent

Û . Where, despite risk aversion, the noise plays no role in the allocation of e�ort. This is because a provider's choices
do not a�ect the expected value of the reward for attaining a certain level of performance.

max
e1,e2∈[0,1]

Û = αB(e1, e2) + (T + a1e1 + a2e2)− C(e1, e2)−
1

2
η(p21σ

2
1) (20)
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max
e1,e2∈[0,1]

U =Pr [e1 < UL− ε1] ·
{
E

[
(T + a1 · e1 + a1 · ε1 + a2e2)−

1

z
C(e1, e2)

]
− Ω

}
+Pr [e1 ≥ UL− ε1] ·

{
(T + p1UL+ ā1e1 + a2e2)−

1

z
C(e1, e2)

}
Where replacing the probabilities with the densities results in the following optimisation problem.

max
e1,e2∈[0,1]

U =F (UL− e1) · [(e1 − UL) · p1 − Ω]

+p1 · UL+ ā1e1 + a2e2 −
1

z
C(e1, e2)

The FOC for e2 is still the one presented in equation 3, but for e1 it is now required to consider the probability of
attaining an output above UL, as shown below.

FOC1 : = ā1 −
1

z
C1 + {F (UL− e1) · p1 − f(UL− e1) · [(e1 − UL) · p1 − Ω]} = 0 (21)

Whether the output is above or below UL is important because as long as e1 + ε1 < UL, part of the marginal �nancial
return p1 = a1 − ā1 is subject to uncertainty (intrinsic motivation is not subject to it). However, by exerting more e�ort,
the probability of loosing such �nancial reward decreases. Here, for the sake of simplicity, the preference for certainty is
modelled by introducing the penalty Ω, which is avoided if the output overcomes the UL threshold. In other words, Ω
captures the value that agents give to obtain a certain reward as opposite to depend on the volatile result that is obtained
below UL. As mentioned above, notice that certainty above UL for the �nancial reward is a speci�c consideration of the
QOF: practices know that if they attain certain performance level, they will know for sure how much income they will have.
Thus, this Ω responds more to the speci�c programme characteristics than to a general consideration of risk aversion: in
the QOF, practices have an extra incentive for trying to perform above UL and as a result it is important to understand
how it would a�ect the test.

The next step is to obtain the marginal variation in optimal e�ort on task 1 with respect to the reward on task 2
following the same procedure as in the case without uncertainty.

de1

da2

= −
z · C12

C11C22 − C2
12 + p1 · z · C22 · f(UL− e1) ·

{
2 +

f′(UL−e1)

f(UL−e1)
·
[

1
p1

Ω + UL− e1
]} (22)

This expression is the equivalent to the certainty-case equation 6. Here, there is an extra term in the denominator,
which in general should still be positive as it is equivalent to the SOC. Thus, as before the sign is determined by C12,
but the magnitude is a function of current e�ort e1. Hence, Proposition 1 is not a�ected by the presence of either risk or
uncertainty.

Proposition 2 requires further analysis.
As with the no-uncertainty scenario, we can derive how general e�ciency z is related to e∗1 . The expression below is

the equivalent to the derivate present is assumption 1.

de1

dz
=

{
ā1 + p1 ·

[
F (UL− e1) + f(UL− e1) ·

(
1
p1

Ω + UL− e1
)]}

C22 − a2C12

C11C22 − C2
12 + p1 · z · C22 · f(UL− e1) ·

{
2 +

f′(UL−e1)

f(UL−e1)
·
[

1
p1

Ω + UL− e1
]} (23)

Prior to discuss this equation in depth, the simulation exercise in Figure 5 will be useful to illustrate how Equations 22
and 23 compare with the expresions in the no-uncertainty case. This Figure follows the same con�guration as the diagram
presented in Figure 2. In this simulation, a cost function with constant second order derivatives is assumed. The noise on
the task's result is assumed to follow a normal distribution. The provided parameters imply that both tasks are substitutes,
and parameter z is drawn from a uniform distribution. The �gure considers three cases: �rst, in black, the policy rules for
e∗1 derived with no-uncertainty (black); second, with uncertainty but without risk aversion (orange), and �nally including
risk aversion (light blue).

Let us consider the case without risk aversion, Ω = 0. As shown in the graph, uncertainty essentially smooths out the

corners of optimal e�ort e∗1(z). Moreover, the slope
∂e1
∂z is always positive, as predicted by Equation 23. While introducing

noise removes the idea of corner solution, it still generates bunching at UL as the slope becomes smaller rapidly near this
threshold.

Let us consider �rst the denominator of Equation 23, and in particular, its last term:(
f′(UL−e1)

f(UL−e1)
· [UL− e1] < 0

)
. When e∗1 < UL, it is implied that (UL− e1) < 0 which also means that f ′(UL − e1) > 0.
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Figure 5: Simulation exercise
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Parameters: UL = 0.5, = 1, c1 = 4, c2 = 4, , a2 = 1,  a1 = 1, a1 = 1.2,  = 0.07 with 10000 simulations

Note: Parameters z drawn from a beta distribution with parameters (5, 2) multiplied by 3. The cost function is

de�ned as C(e1, e2; z, c1, c2, δ) = 1
z
· ( 1

2
(c1e21 + c2e22) + δe1e2). For the cases with uncertainty, x1 = e1 + v1 where

v1 ∼ N(0, σ)
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Hence, the entire term is negative
(
f′(UL−e1)

f(UL−e1)
· [UL− e1] < 0

)
, so the denominator will become smaller as e1 moves away

from UL. When e∗1 > UL, exactly the same happens as when f ′(·) < 0 and (UL− e1) > 0. Hence, the further e1 is from
UL, the larger the derivative, at least until it becomes equal to the no-uncertainty case when f(UL− e1)→ 0.

Risk aversion plays an important role as observed in the example in Figure 5 (Ω = 0.05). In the denominator, the term(
f′(UL−e1)

f(UL−e1)
·
[

1
p1

Ω + UL− e1
])

changes the sign near UL three times. First, below UL, it makes the slope even larger, as it

goes in the same direction as UL−e1and the denominator becomes smaller. Second, in the interval e∗1 ∈ [UL, 1
p1

Ω+UL], the

term f ′(·) becomes positive so the denominator is larger and then the derivative
de1
da2

is smaller. Finally, when e∗1 ≥ 1
p1

Ω+UL,

the derivative starts to grow again. The implication for the distribution of x1 is that the bunching will be centred above
UL.

While the numerator of Equation 23 is also a function of f(·) and risk aversion, it plays a less important role in the

graph of e∗1(z). The term
[
F (UL− e1) + f(UL− e1) ·

(
1
p1

Ω + UL− e1
)]

decreases as e1 departs from 0. This is because

F (UL− e1) decreases with e1, and so does
(

1
p1

Ω + UL− e1
)
. This e�ect is present both above and below UL.

Proposition 4. In the presence of uncertainty on the task result, and if f (·) corresponds to a symmetric unimodal

distribution with mean 0,
de1
da2

becomes larger in absolute value as e1 moves away from 1
p1

Ω + UL.

This proposition replaces Proposition 2, as
de1
da2

is not required to be 0 at UL anymore. The denominator in Equation

6 is the same as in Equation 23, so the same attenuation pattern when e1 is just above UL can be expected. The main
di�erence is that the sign is given by parameter C12 and that f(·) and risk aversion are present only in the denominator.
Figure 6 presents two additional examples. The graphs on the left correspond to a cost function that exhibits substitution
between tasks, while the ones on the right come from complementary tasks. The top graphs show optimal e�ort exerted on
task 1 as a function of the price of task 2, for each of the cost functions and considering no-uncertainty (black), uncertainty

(orange) and risk aversion (light blue). In the second row, the �gure presents the �rst derivative of the graphs above,
de1
da2

.

In both types of cost function, the derivatives are closest to zero when e1 = UL or is above it. For the case of substitutes,
there are two additional cases in which the derivative is zero; those are corner solutions in which either e∗2 = 0 or e∗2 = 1.

B Model Examples
A simple cost function that captures both substitutability and complementarity is presented in Bolton and Dewatripont
[2005]: C(e1, e2; θ = {z, c1, c2, δ}) = 1

z · (
1
2 (c1e

2
1 + c2e

2
2) + δe1e2) under the assumption that δ <

√
c1c2, ci > 0 ∀i. As a

result we can characterize the second derivatives with each parameter Cii = 1
z · ci and Cij = 1

z · δ, ∀i 6= j.

B.1 No uncertainty
Given our function φi(xi), for an optimal level of e�ort below UL1 , the optimal levels of e�ort are given by

e
∗
1 = z ·

a1c2 − δa2

c1c2 − δ2
, e
∗
2 = z ·

a2c1 − δa1

c1c2 − δ2

Hence, Equation 6 becomes:

de1

da2

= z ·
−δ

c1c2 − δ2

Where it is clear that the sign of δ dominates the response to the incentives: if it is negative, then the tasks are
complements as the marginal cost of one of the tasks is reduced when the e�ort of the other is increased (similar to the
concept of economies of scope). However, notice that if we are above the threshold UL1, two options should be considered

e
∗
1 = z ·

ã1c2 − δa2

c1c2 − δ2
, e
∗
2 = z ·

a2c1

c1c2 − δ2
and e

∗
1 = UL1 , e

∗
2 =

z · a2 − δUL1

c2

As a result:
1) If δ > 0 (substitutes), at most, it is optimal to exert an e�ort level e1 = UL1, so it is expected that

de1
da2
|e∗1≥UL1

= 0.

Below that level, e�ort in task 1 it is decreasing with respect to the other task price:
de1
da2
|e∗1≥UL1

≤ 0

2) If δ < 0 (complements), below a cuto� ā2 it is optimal to exert an e�ort level e1 = UL1, but above such a price

cuto�,
de1
da2

> 0.

The result is a three section supply of e�ort 1. For substitutes it is �at, and then it decreases until it is optimal not to
do any e�ort; and for complements it is increasing, �at and then increasing.
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Figure 6: Simulation exercise: x1(a2)
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·( 1

2
(c1e21+c2e22)+δe1e2). For the cases with uncertainty,

x1 = e1 + v1 where v1 ∼ N(0, σ)
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Kink With our current restrictions, it is straightforward to obtain the density of e∗1 . Here, H̄(ẽ1) = G
[
e∗−1
1 (ẽ1; ā1, a2)

]
=

G

[
ẽ1

c1c2−δ
2

ā1c2−δa2

]
. Then, h̄(ẽ1) = g

[
ẽ1

c1c2−δ
2

ā1c2−δa2

]
· c1c2−δ

2

ā1c2−δa2
and similarly h(ẽ1) = g

[
ẽ1

c1c2−δ
2

(ā1+p1)·c2−δa2

]
· c1c2−δ

2

(ā1+p1)·c2−δa2
.

Let us consider the point ê = ẽ1
(ā1+p1)·c2−δa2

ā1c2−δa2
. If we consider the density without kink h(ê) = g

[
ẽ1

c1c2−δ
2

ā1c2−δa2

]
·

c1c2−δ
2

(ā1+p1)·c2−δa2
. We can re-express it as g

[
ẽ1

c1c2−δ
2

ā1c2−δa2

]
= h(ê) · (ā1+p1)·c2−δa2

c1c2−δ2
. Replacing this term in the density above

UL, we can express the density of e∗1 in terms of h(·), as shown below:

h(ẽ1) =


h (ẽ1) if ẽ1 < UL

b if ẽ1 = UL

h
(
ẽ1

(ā1+p1)·c2−δa2
ā1c2−δa2

)
· (ā1+p1)·c2−δa2

ā1c2−δa2
if ẽ1 > UL

(24)

Notice that near UL, there is a discontinuity on the density even if we do not consider the bunching mass at UL. Below
UL the density is h (ẽ1), but above it, the density is larger for a constant h (ẽ1). This is evident in the example of �gure 5,
where h (·) is a constant as g(·) is uniformly distributed.

Comparative Statics What can generate the distribution over e1? Let us consider only interior solutions (a1c2 −
δa2 > 0 and a2c1 − δa1 > 0) and let ∆T be the di�erence between the slopes of e∗1 with respect to a2 above and below a
given point T

∆T =
de1

da2

|e∗1<T −
de1

da2

|e∗1≥T

Heterogeneity on c1 If the distribution on e1 is due to e�ciency on task 1, the sign of ∆ is informative about
the sign of δ. The resulting sorting on e1 due to variation in e1 is the same regardless of the nature of the cost function,
while the size of the e∗1 slope with respect to a2 depends on it.

∂e1
∂c1

∂2e1
∂a2∂c1

Below - Above (∆T )

− (a1c2 − δa2) · z−1 ·
(
c1c2 − δ2

)−2
c2 δ · z−1 ·

(
c1c2 − δ2

)−2
c2

−δ
z·(c̄1c2−δ2)

− −δ
z·(c1c2−δ2)

First term is smaller in abs. val as its denominator is larger
δ < 0 (Complements) < 0 < 0 < 0
δ > 0 (Substitutes) < 0 > 0 > 0

Heterogeneity on c2 If the distribution on e1 is due to the e�ciency on task 2, the sign of ∆ is not informative
about the sign of δ. In this case, both the sorting and the size of the e∗1 slope with respect to a2 depend on the nature of
the costs function.

∂e1
∂c2

∂2e1
∂a2∂c2

Below - Above (∆T )

δ (a2c1 − a1δ) · z−1 ·
(
c1c2 − δ2

)−2
δ · z−1 ·

(
c1c2 − δ2

)−2
c1 Depends on δ

δ < 0 (Complements) < 0 < 0 < 0
δ > 0 (Substitutes) > 0 > 0 < 0 !!!!

Heterogeneity on δ If the distribution on e1 is due to the degree of complementarity/sustituibility, the sign of
∆ can only detect substitutes. Here, the size of the e∗1 slope with respect to a2 depend on the nature of the costs function
but the sorting depends on the value of other parameters. If tasks are substitutes and e∗1 >

a2
2δz2

, the sorting will be positive.

In that case it is possible to say that the tasks are substitutes by observing a positive ∆, but if this term is positive it is
not possible to deduce the sign of δ.

∂e1
∂δ

∂2e1
∂a2∂δ

Below - Above (∆T )(
−a2

(
c1c2 − δ2

)
+ 2δ (a1c2 − δa2)

)
· z−1 ·

(
c1c2 − δ2

)−2 −
(
δ2 + c1c2

)
· z−1 ·

(
c1c2 − δ2

)−2
c1 Depends on δ(

−a2 + 2δz2 a1c2−δa2
z(c1c2−δ2)

)
· z−1 ·

(
c1c2 − δ2

)−1(
−a2 + 2δz2e∗1

)
· z−1 ·

(
c1c2 − δ2

)−1

δ < 0 (Complements) < 0 < 0 < 0

δ > 0 (Substitutes) If −a2

(
c1c2 − δ2

)
+ 2δ (a1c2 − δa2) > 0, then > 0 < 0 > 0

If −a2

(
c1c2 − δ2

)
+ 2δ (a1c2 − δa2) < 0, then < 0 <0 < 0 !!!!

B.2 With uncertainty

Adding the functional form C = 1
z · (

1
2 (c1e

2
1 + c2e

2
2) + δe1e2). Also, assume ε1 ∼ N(0, σ1), which will allow us to work with

the standard normal distribution. An additional element is the inclusion of the penalty Ω for uncertainty. For instance, this
term will be equal to 1

2η(a2
1σ

2
1) if we consider an exponential utility function u(p) = −exp(−η · p), where ηis the absolute

risk aversion coe�cient.
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FOC1 : = z ·
{
a1Φ

(
UL− e1
σ1

)
+

1

σ1

φ

(
UL− e1
σ1

)
· [(UL− e1) · a1 + Ω]

}
− c1e1 − δe2 = 0

FOC2 := z · a2 − c2e2 − δe1 = 0

And the equivalent of Equation 22

de1

da2

= z ·
−δ

c1c2 − δ2 + z · c2
{

1
σ2 φ

′
(
UL−e1
σ1

)
· [(UL− e1) · a1 + Ω] + 2a1

1
σφ
(
UL−e1
σ1

)}
Given that for the standard normal pdf it holds that φ′(x) = −xφ(x)

de1

da2

= z·
−δ

c1c2 − δ2 + z · c2
{
− 1
σ3 φ

(
UL−e1
σ1

)
· [UL− e1] · [(UL− e1) · a1 + Ω] + 2a1

1
σφ
(
UL−e1
σ1

)}
= z·

−δ

c1c2 − δ2 + a1 · z · c2 · 1
σ · φ

(
UL−e1
σ1

){
2− 1

σ2 · [UL− e1] ·
[

1
a1

Ω + UL− e1
]}

As in the general case, being far from UL implies a larger slope (in absolute value). This is an e�ect that is attenuated
by risk aversion below UL. Above such cut-o�, risk aversion makes the derivative larger in absolute value. In this particular
case, being very far from UL implies that the derivative will be equivalent to the non-uncertainty case.

C QOF Payment
Equation 26 shows how ratio indicators are translated into income for a practice i. Essentially, achievement xi of indicator
j is translated into points, and such points into yearly income. First, points are allocated according to a non-linear tari�
that depends on two indicator speci�c thresholds. Below the lower limit (LLj) zero points are awarded, and above the
upper limit (ULj) the maximum amount of available points for indicator j is awarded (Equation 25). The resulting �gure is
adjusted with respect to the relative size of the practice (contractor population index, CPIi), and to the relative prevalence
of the speci�c condition rewarded for clinical indicators (PFij). The achievement factor is multiplied by the CPI index and
the prevalence factors, and by the price per point (Equation 26). The CPI captures the size of the practice, and is calculated
as the number of patients in the practice relative to the �gure 5891, which was the 2003 average list size.32 The prevalence
factor measures how commonly the condition is treated in indicator j, relative to the national average.

xij =
Numeratorij

Denominatorij

AFij =


0 if xi ≤ LLj
(xi − LLj) ·

Avail. Pointsj
ULj−LLj

if xi > LLj

Avail. Pointsj if xi ≥ ULj

(25)

CPIi =
listi

5891

PFij =
denomij/listi|Xij
E[denom/list|X]

, where X are speci�c conditions

Pij = (Value per point in £) · AFij · CPIi · PFij (26)

D Additional Tables

32Since 2013 this �gure has been updated annually. More details are available from BMA [2013].
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Table 7: QOF indicators descriptives for 2010/11

(1) (2) (3) (4) (5) (6)
Indicator UL Number E[xt] P[xt < UL] ρ(xt) E[xt − xt−1 E[xt − xt−1

|xt−1 < UL] |xt−1 > UL]

AF03 90% 8245 93.82 7.14 0.50 9.88 -0.55

AF04 90% 8245 95.28 6.43 0.51 26.20 -1.39

ASTHMA03 80% 8245 90.00 4.69 0.41 18.64 -0.76

ASTHMA06 70% 8245 79.58 5.29 0.54 11.03 -0.19

ASTHMA08 80% 8245 87.89 6.37 0.46 15.63 -0.98

BP5 70% 8245 79.68 5.17 0.64 5.87 -0.09

CANCER03 90% 8245 92.75 17.84 0.34 18.18 -2.69

CHD08 70% 8245 81.90 3.51 0.56 11.30 -0.41

CHD09 90% 8245 93.58 7.56 0.46 4.30 -0.66

CHD10 60% 8245 74.91 2.60 0.67 13.30 -0.70

CHD12 90% 8245 92.73 16.53 0.48 5.17 -0.31

CKD02 90% 8245 97.26 1.29 0.41 26.83 -0.37

CKD03 70% 8245 74.86 21.73 0.52 5.58 -1.72

CKD05 80% 8245 90.78 6.03 0.46 40.20 -2.70

CKD06 80% 8245 82.35 24.29 0.53 14.80 -1.33

CVD01 70% 8245 80.12 14.71 0.44 26.06 -5.50

CVD02 70% 8245 82.61 7.94 0.37 34.13 -5.68

DEM02 60% 8245 80.54 3.04 0.42 36.15 -0.92

DM2 90% 8245 94.87 7.00 0.54 4.47 -0.36

DM10 90% 8245 91.39 22.84 0.58 4.93 -0.69

DM13 90% 8245 88.80 37.48 0.65 3.38 -1.38

DM15 80% 8245 89.28 8.07 0.53 20.31 -1.66

DM17 70% 8245 82.73 2.43 0.60 8.70 -0.55

DM18 85% 8245 91.19 9.76 0.47 5.99 -0.17

DM21 90% 8245 91.08 24.33 0.52 5.46 -0.97

DM22 90% 8245 96.95 2.44 0.44 7.78 -0.02

EPILEP06 90% 8245 95.62 6.95 0.27 13.07 -0.64

EPILEP08 70% 8245 73.96 26.14 0.56 7.72 -3.09

HF02 90% 8245 95.46 8.02 0.51 17.25 -1.03

HF03 80% 8245 90.26 4.24 0.46 27.42 -1.10

HF04 60% 8245 83.15 3.26 0.47 41.65 -1.39

SMOKE03 90% 8245 95.61 2.66 0.52 5.69 0.00

SMOKE04 90% 8245 93.07 12.48 0.44 4.98 -0.72

STROKE07 90% 8245 91.49 23.91 0.43 5.01 -1.08

STROKE08 60% 8245 77.18 3.07 0.50 20.72 -0.57

STROKE10 85% 8245 90.09 13.45 0.40 8.97 -0.49

STROKE12 90% 8245 93.79 8.98 0.45 9.97 -0.93

STROKE13 80% 8245 88.90 7.51 0.58 25.92 -1.87

THYROI02 90% 8245 95.81 3.24 0.41 10.46 -0.11

Notes: Own calculations based on QOF data. Number: Number of GP practices, including those with 0 elegible
patients for the given indicator. E[xt] : Average achievement per indicator. P[xt < UL] : Proportion of practices
with an achivement below UL. ρ(xt) : Correlation between 2010 and 2009 achivement.
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Table 8: Detailed Changes in QOF 2011 clinical indicators with respect to 2009-2010

Status Description A�ected

Indicators

Price

Interpretation

Points

Retirements These tasks are not rewarded anymore. Clinical
indicators are about having a recent record of certain
physical measures, or reviews.

CHD5, CHD7,
DM5, DM11,
DM16,
EPILEPSY7, MH7,
STROKE5

Reduction 32

Points reduced Number of assigned points per indicator was reduced.† BP4, DEP1 Reduction 26 to 22
Upper Limit
Increased

Small increase from 70% to 71%. ♠ CHD6, STROKE6 Reduction 22

Replacement I For indicators PP01, MH04, MH05, the time for
accomplishing a given goal was reduced. For CHD2,
the optional specialist referral was made compulsory.

PP01, MH04,
MH05, CHD2

Reduction 18

Replacement II Decrease in points and new wording is more precise
and requires actions at the moment of diagnosis
instead of treatment starting point.

DEP2, DEP3 Reduction 45 to 25

Replacement III Most of these indicators were replaced by versions
which are harder to accomplish. In a few of them this
was compensated with extra points, but in some others
there was a reduction as well:

• For CHD11/CHD14 there is an increase from 7
to 10 points in exchange for prescribing aspirin
and statins on top of an ACE inhibitor or
alternative blood pressure treatments.

• Requirements for DM9 were increased from
checking peripheral pulses to a more
comprehensive foot examination. It was also
increased from 3 to 4 points.

• Indicator DM12 was split into DM30 and
DM31, keeping the same number of points. It
asked for a percentage of patients below a given
blood pressure target (145/85). It was replaced
by two targets, one slightly below the original
(140/80), and one notoriously above (150/90).

• Indicator MH09 was split into MH11, MH12,
MH13, MH14, MH15 and MH16. It moved from
23 to 27 points. The original indicator was
general and imprecise (�routine health
promotion and prevention advice appropriate to
their age and health status�), while the
replacements ask for speci�c measurements
depending on age and gender.

CHD11/CHD14,
DM9, DM12
(DM30,DM31),
MH09 (MH11,
MH12, MH13,
MH14, MH15 and
MH16)

Ambiguous 51 to 59

Replacement IV The cuto� was relaxed from last HbA1C to be 7% or
less, to HbA1C to be 7.5% or less

DM23/DM26 Increase 17

Replacement V Similar or the same wording, but the recoding was
done in order to highlight recent changes in diagnostic
procedures. For diabetes indicators the wording is
explicit about new measurement standards.

COPD1/COPD14,
COPD12/COPD15,
MH6/MH10,
DM24/DM27,
DM25/DM28

- 32

New These are tasks that were not considered before. Three
new clinical indicators, on dementia, epilepsy and
learning disabilities.

DEM3, EPILEPSY
9, LD2

Increase 12

Unchanged No change on points, thresholds or wording - 454

Note: This corresponds to our interpretation based on NHS Employers public documents. † Does not include indicators
which wording was amended as DEP2 and DEP3. ♠ Does not include DM12/DM30, which is an indicator that its

wording was also amended.
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Table 9: Bunching tests for selected indicators I

DM22: The percentage of patients with
diabetes who have a record of estimated
glomerular �ltration rate (eGFR) or serum
creatinine testing in the previous 15 months.
3 points. LL=40, UL=90.

SMOKE3: The percentage of patients with any
or any combination of the following conditions:
coronary heart disease, stroke or TIA,
hypertension, diabetes, COPD, CKD, asthma,
schizophrenia, bipolar a�ective disorder or other
psychoses whose notes record smoking status in
the previous 15 months (except those who have
never smoked where smoking status need only be
recorded once since diagnosis)
30 points. LL=40, UL=90.

THYROID2: The percentage of patients with
hypothyroidism with thyroid function tests
recorded in the previous 15 months
6 points. LL=40, UL=90.
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Table 10: Bunching tests for selected indicators II

AF04: The percentage of patients with atrial
�brillation diagnosed after 1st April 2008 with
ECG or specialist con�rmed diagnosis.
10 points. LL=40, UL=90.

DM13: The percentage of patients with
diabetes who have a record of micro-albuminuria
testing in the previous 15 months (exception
reporting for patients with proteinuria)
3 points. LL=40, UL=90.

CKD06: The percentage of patients on the
CKD register whose notes have a record of an
albumin:creatinine ratio (or protein:creatinine
ratio) value in the previous 15 months
6 points. LL=40, UL=80.
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