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This paper develops empirical evidence on the viability of a form of
volatility trading known as “dispersion trading.” The results shed light
on the efficiency with which U.S. options markets price volatility.
Using end-of-day implied volatilities extracted from equity option
prices for the stocks that comprise the S&P 500, the implied volatility
of the S&P 500 is computed using a modification of the Markowitz
variance equation. This Markowitz-implied volatility is then
compared to the implied volatility of the S&P 500 extracted directly
from index options on the S&P 500. These contemporaneousmeasures
of implied volatility are then examined for exploitable discrepancies
both with and without transaction costs. The study covers the period
October 31, 2005 through November 1, 2007.
It is shown that, from a trader's perspective, index option implied
volatility tended to be more often “rich” and component volatilities
tended to be more often “cheap.” Nevertheless, there were times
when the opposite was true; suggesting that potential dispersion
trades can run in either direction.
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R1. Introduction

Ever since the publication of the seminal Black–Scholes–Merton option pricing models, volatility1 has
been of growing interest to academics and practitioners alike. Key aspects of volatility have been examined
and the findings have been used to help explain various anomalies associated with observed option pricing
and to suggest possible trading strategies. Some of the better known dimensions of volatility that have
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been studied include (1) the tendency of forward-looking implied volatility to exceed backward-looking
realized volatility,2 (2) the tendency of volatility to be mean reverting,3 (3) the distribution of volatility,4

(4) the tendency of volatility to be negatively correlated with the price level of the underlying,5 (5) the
volatility smile or skew6, and (6) the term structure of volatility. Most recently, a measure of the implied
volatility of the S&P 500, known as the VIX, has gained stature as the market's “fear gauge” and is quoted
daily in the business press.7

This paper contributes to the literature on volatility by developing empirical evidence on a relatively
new form of volatility trading, known as “dispersion trading,” that is practiced by some quantitatively
sophisticated hedge funds and by proprietary trading desks of some banks. In the process, it sheds light on
the relative efficiency with which U.S. options markets price index volatility and index component
volatilities.

Dispersion trading, as most often defined, involves trading index volatility against index component
volatilities. This strategy can make sense if the index volatility implied by index options differs from the
index volatility implied by the Markowitz variance equation, as derived from index component volatilities.
Those who practice dispersion trading claim that index volatility tends to be more often rich while
component volatilities tend to be more often cheap thus suggesting that index options should be written
and equity options on the index components should be purchased.

In this study, the end-of-day implied volatility of the S&P 500 derived from index options (referred to
here as “index-option-implied volatility” or IOIV) is compared to the contemporaneous end-of-day implied
volatility of the S&P 500 derived by applying a modified version of the Markowitz variance equation to the
implied volatilities of the index components as extracted from equity options on those components. The
latter implied volatility is termed the “Markowitz-implied volatility” or MIV. The study covers the period
October 31, 2005 through November 1, 2007. A number of aspects of IOIV andMIV are examined, including
the degree to which the two measures of index volatility are correlated, the nature of the distribution of
their differences, the frequency and size of their discrepancies, and how the discrepancies are related to the
level and to the volatility of index volatility. Violations of the strict “law of one price” (LOP) do not imply
trading opportunities unless transaction costs are reasonably estimated and factored into the analysis. For
this reason, the transaction costs associated with exploiting mispriced volatility were estimated. In this
study, transaction costs are measured in terms of volatility points.

The remainder of this paper is structured as follows. The next section offers a brief description of the
dispersion trading strategy together with the claims made by practitioners and arguments that have been
offered in the literature. The following section lays out the structure of the empirical tests performed. The
final sections report results and conclusions.

2. Dispersion trading

It is difficult to determine the extent to which volatility strategies are used by hedge funds due to the
proprietary nature of hedge fund activities and the general hedge fund obsession with secrecy. But it is
clear that such strategies are popular and their use is growing. One particular strategy, called “volatility
dispersion” or “dispersion trading,” has been described in the literature by Nelken (2006). It generally
involves selling volatility on a stock index and buying the volatilities of the index components, but usually
not the reverse. Such strategies can be effected using equity options and index options or they can be
effected using volatility swaps or variance swaps.

The same strategy has been discussed in both the business press and in quantitative research reports
circulated by the derivatives industry. For example, Gangahar (2006), writing for the Financial Times,
describes buying individual equity options (i.e., buying the volatilities of the index components) while
simultaneously writing index options (i.e., selling the volatility of the index). He asserts that “if maximum
U

2 See, for example, Christensen and Prabhala (1998) and Fleming (1998).
3 See, for example, Goyal and Saretto (2007) and Lehman Brothers (2002).
4 Many studies have shown that volatility is well-described by a lognormal distribution.

^
See, for example, Dacorogna (2006).

5 This property of volatility seems to have first been discovered by Black (1976, pages 177–181).
6 See Ederington and Guan (2002).
7 See, for example, Whaley (2000).

^
See also Jiang and Tian (2007) and Carr and Wu (2007).
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dispersion is realized, the strategy will makemoremoney on the long options on the individual stocks than
it loses on the short option position on the index….” In a technical report written by Mougeot (2007), and
distributed to clients of Deutsche Bank in May of 2007, dispersion trading is defined as “a short position on
index volatility and a long position in index constituent volatilities, which by construction results in being
short average correlation.”

When options are used to effect a dispersion trade, the trader would determine if the trade is warranted
by comparing index volatility extracted from index options to the index volatility implied by the volatilities
of the index components. The latter requires estimates of the return correlations among the various index
components along with the appropriate weighting scheme. The individual component volatilities,
correlations, and weights are then combined using the Markowitz variance equation to produce the
Markowitz-implied volatility. The correlations employed in the analysis are typically historical
correlations, which introduce some inexactness for any forward-looking trade execution.

Option-based dispersion trading strategies most often rely on at-the-money (ATM) options to compute
the implied volatilities and to execute the strategy. The strategy is complicated by the fact that an option on
a portfolio (e.g., an index option) is not the same thing as a portfolio of options. Further, the moneyness of
options is continuously in flux as the prices of the

^
various underlyings change. This necessitates frequent

rebalancing of the option portfolio. For this reason, volatility swaps and variance swaps are often
substituted to effect the strategy even though the volatilities themselves may be derived from option
prices.8

Option-based dispersion trades typically take an “algorithmic approach” to trading options. Algorithmic
trading is automated, usually electronic, trading that executes buy and sell orders in a

^
rapid-fire fashion

according to a set of well-defined trading rules. It typically involves many trades in small lot sizes so as to
minimize the impact of the trading on market prices.

The dispersion strategy is most often employed when the premiums (and therefore the implied
volatilities) on index options are high relative to the premiums and volatilities of the index components.
The trader intends to profit when either (1) implied volatilities come back into equilibrium, through an
increase in the volatilities of the components or a decrease in the volatility of the index or some
combination thereof; or (2) the options expire andmore is earned on the optionswritten than is lost on the
options purchased.

Because index volatility is a function of the individual component volatilities but also of the levels of the
return correlations among the index components, some have argued that dispersion trading can just as
easily be viewed as a form of correlation trading. That is, the claimed tendency of index volatility implied by
index options to exceed Markowitz-implied volatility derived from component volatilities may reflect a
“correlation risk premium.” See, for example, Mougeot (2007). For this reason, it is often difficult to
distinguish volatility-based trading from correlation-based trading. Others who have looked at the
correlation risk premium include Driessen, Maenhout, and Vilkov (2006) and Coval and Shumway (2001).

3. Empirical analysis

In this section, the methodology employed in computing the various measures of volatility covered by
this study

^
is described. The study periodwas October 31, 2005 through November 1, 2007. It was necessary

to employ a more a computationally efficient version of the Markowitz variance equation. The one
employed, referred to here as the “modified Markowitz equation,” is applicable when the portfolio of
interest is structured to replicate the benchmark index. Importantly, the modified Markowitz equation
produces the standard deviation of the portfolio's return (i.e., its volatility) directly rather than the variance
of the portfolio's return. In this study, the inputs to the equation include (1) the implied volatilities from
30-day ATM equity options for all the stocks in the S&P 500, appropriately weighted by the respective
stocks' representations in the index, and (2) the historical return correlations between the individual
stocks and the index. The output from the modified Markowitz equation is referred to here as the
“Markowitz-implied volatility” (or MIV) for the S&P 500. Separately, the implied volatility of the S&P 500
8 For a discussion of variance and volatility swaps, see Demeterfi, Derman, Kamal, and Zou (1999) and Brockhause and Long
(2000).
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index is extracted directly from options on the index. This is referred to here as the “index-option-implied
volatility” (or IOIV). The two measures of volatility, MIV and IOIV, are then compared, day-by-day over the
two-year study period. The goal is, in part, to test the claimmade by dispersion traders that index volatility
tends to be rich and component volatilities tend to be cheap. That is, the null hypothesis is that, on average,
MIV=IOIV versus the alternative hypothesis that, on average, IOIV>MIV. If the null hypothesis can be
rejected, deviations from the law of one price (LOP) exist. However, such deviations, if they exist, do not
imply profitable dispersion trading opportunities unless they are sufficiently large to cover transactions
costs. It is therefore necessary to develop a reasonable, preferably conservative, estimate of transaction cost
for strategy execution. Because a dispersion trade can be in either direction, a violation of the LOP, and a
trading opportunity, exists whenever MIV>(IOIV+transaction costs) or MIV<(IOIV−̂

^
transaction costs).

The key assumptions in the analysis are (1) that the S&P 500 is sufficiently diversified that unsystematic
risk is nonexistent, (2) that historical return correlations are reasonable proxies for current return
correlations; (3) that the method of dealing with missing data does not bias the results; and (4) that the
estimate of transaction costs is reasonable.

3.1. Modified Markowitz equation

As shown by Markowitz (1952), the variance of a portfolio's (in this case the S&P 500 index's) return
(σm

2) is given by:
159160

where

9 Mar
dividen
protecte
10 The
and the
explicit
and cor
(comm
employ
11 This
structur

Plea
mark
PRσ2
m = ∑

500

i=1
∑
500

j=1
wiwjσi;j ð1Þ

wi denotes the weight on stock iwithin the index,wj denotes the weight on stock jwithin the index,

161

162
where
and σi,j denotes the covariance of the return on stock i with the return on stock j.9 If expressed in terms of
correlations rather than covariances, Markowitz's variance equation is given by:
163164
165
TE
D

σ2
m = ∑

500

i=1
∑
500

j=1
wiwjσiσjρi;j ð2Þ

σi and σj denote the standard deviations of the returns for stocks i and j, respectively (i.e.,
nent volatilities) and ρi,j denotes the return correlation between stock i and stock j.10
166
Ccompo
By definition, standard deviation (i.e., index volatility) is given by Eq. (3)
167168
Eσm =
ffiffiffiffiffiffiffi
σ2
m

q
ð3Þ
169

170

171

172

173

174

175
OR
RUsing Eqs. (2) and (3) to calculate the index variance and the index volatility would be cumbersome.

The correlation matrix would contain 250,000 correlations. Eliminating the 500 unit diagonal points and
exploiting the symmetrical property of the correlation matrix would reduce the computations to a still
cumbersome 124,750 correlations.

However, a portfolio structured to replicate an index will, by construction, have zero unsystematic risk
relative to the index.11 That is, the correlation between the replicating portfolio and the index will be 1.0.
This allows us to calculate the volatility of the portfolio by focusing only on its systematic components
UN
C

kowitz's variance equation, as originally formulated, is based on total returns
^
. However, this study uses price returns.

^
That is,

ds are not included. This is necessitated by the fact that exchange-traded options in the United States are not dividend
d. All references to “return” in this study are references to “price return.”
Markowitz variance equation routinely employs the portfolio weights, the standard deviations of individual stock returns,
correlations of paired returns to obtain the variance and standard deviation of the portfolio's return.

^
It is rarely made

, however, what compounding assumption is employed in calculating the stock returns from which the standard deviations
relations are computed.

^
In all option valuation modeling, on the other hand, the standard deviations of stock returns

only called the
^
vols) are measured from continuous returns.

^
For this reason, all of the modeling incorporated in this study

s continuous returns (i.e., log returns).
^

is equivalent to treating the index as the entire investment universe.
^
It is an appropriate treatment when the portfolio is

ed to replicate the index for purposes of trading the portfolio against the index.
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where
equation” and the result of this calculation is referred to as the MIV noted earlier. If the LOP holds, then the
MIV would be expected to match the volatility extracted directly from S&P 500 index options referred to
here as the IOIV.12 To the degree that the two volatilities differ, there are, potentially, alpha opportunities in
the form of exploitable inefficiencies in the pricing of volatilities.

3.2.
^
Data selection and acquisition

The application of the modified Markowitz equation required the following data: (1) the weightings of
the various S&P 500 components on each day of the study period (these change, however slightly, each day
as a natural consequence of the index's construction); (2) the historical correlations of the component
returns with the S&P 500 return (these were derived from 3-years of rolling monthly returns); and (3) the
individual stocks' implied volatilities derived from equity options on each day of the study period. The
entire analysis that follows was done twice (once using calls and once using puts).

The end-of-day daily weightings of the 500 stocks that made up the S&P 500 were downloaded from
Bloomberg for each day of the study period. It was necessary to download 505 separate days' weightings.

In order to generate the three years of rolling correlations, it was necessary to secure three years of price
data prior to the beginning of the study period in addition to the two years of

^
study-period data. The three

years prior to the two-year study period is referred to as the pre-study period. Thus, five years of price data
were required to generate the correlations. This covered the period October 30, 2002 through November 1,
2007. Over the course of the two-year study period, a number of stocks went into and a number of stocks
came out of the S&P 500. As a result, there were a total of 586 stocks employed in the study, but only the
relevant 500 were used on any given day. The end-of-day prices for the 586 stocks and for the S&P 500
were downloaded from Bloomberg. These prices were split adjusted but not dividend adjusted.13

From the daily price data, monthly returns were generated as the natural log of the ratio of the stock
price on day t to the stock price 21 trading days prior (day t

^
–21).14 The samewas done for the index values.

The procedural details are worth elaborating.
As per the timeline in Fig. 1, the first day of the study period is day 1 and the last day is day 505. The first

day of the pre-study period is day−755 and the last day would be day 0. Because a month is defined as 21
trading days, the first day for which a monthly return could be computed is day −734 (November 29,
2002). The general calculation is as follows:
208209
RRMRt = ln
St

St−21

� �
ð5Þ

MRt denotes the monthly return as measured on day t. For day −734, this would be� �

210

211

212

213
COwhere
MR−734 = ln S−734

S−755
. To compute the monthly return for the next day, day −733, each subscript is

incremented by 1. Thus, MR−733 = ln S−733
S−754

� �
. This is repeated every day in a rolling fashion through both

the pre-study period and the study period, ending with: MR505 = ln S505
S484

� �
. Thirty six of these paired

monthly returns (one stock at a timewith the S&P 500) were then used to generate a return correlation. On
UN

s statement assumes that the historical return correlations are good proxies for current return correlations.
hange-traded options in the United States are split adjusted but not dividend adjusted. It was important that the price data
ed in this study be consistent with standard practice in the options markets.
the United States, a trading year averages 252 days which is conveniently broken up into 21 trading day intervals
nting trading months. Because of weekends, holidays, and monthly calendar day variations, trading months do not
ond precisely to calendar months.
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added. This was done for each stock separately.
The implied volatilities of each stock for each of the 586 stocks were pulled from Bloomberg for each of

the 505 days of the study period. Bloomberg obtains these implied volatilities from synthesized 30-day
ATM equity options based on the midpoint of the bid–ask spread.15 The implied volatilities were gathered
separately for calls and puts. The end-of-day implied volatilities for the index, derived from synthesized 30-
day ATM index options (underlying ticker symbol SPX), were also downloaded from Bloomberg for each
day of the study period.16 This too was done separately for calls and puts.

This then completed the data acquisition component of the study.

3.3. Missing data

In this study, two distinct types of missing data problems were encountered: (1) missing stock price
data; and (2) missing option-implied volatility data.

With respect to historical stock price data, on average, on any given day, data was missing for 10 stocks.
This ranged from a minimum of six stocks to a maximum of fifteen.

With respect to missing implied volatility data for individual stocks, there was, on average, on any given
day, data missing for nineteen stocks. The minimum was four and the maximum was twenty-eight.

While there wasmissing price and volatility data for individual stocks, therewas nomissing data for the
end-of-day value of the S&P 500 or for the implied volatilities of the S&P 500.

For any day that either price or volatility data was missing for a stock, that stock was excluded from the
MIV computation. The remaining components of the index were re-weighted by scaling the weights in
such a fashion as to maintain proportionality and achieve a total weighting of 100%. There was no reason to
believe that the stocks associated with missing price or volatility data had either greater or lesser monthly
returns or greater or lesser volatilities than the stocks for which data was not missing. Further, an
examination of the specific stocks for which data was missing revealed no clustering by industry.

4. Results

4.1. Preliminary results in the absence of transaction costs

Having fully fleshed out for each of the 505 trading days of the study period (1) the adjustedweightings,
(2) the individual stocks' call and put implied volatilities, and (3) the historical return correlations, the
modified Markowitz equation was applied and the MIV was calculated. This was straightforward and
resulted in two end-of-dayMIVs for each day, one generated from calls and one generated from puts. These
could then be compared to the same-day end-of-day index-option-implied volatilities (IOIVs) for each of
the 505 days of the study period.
U

15 These options are synthesized by Bloomberg by normalizing the expiry and the moneyness through a partially non-linear
interpolation. Bloomberg extracts implied volatilities using a Black–Scholes Model for European options, a Roll–Geske Model for
American-type options if there is one dividend, and a Trinomial Model if there is more than one dividend.
16 The same methodology is used to extract the implied volatilities from index options as for equity options.
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day behavior of these same measures for puts. The Pearson product moment correlation between IOIV and
MIV for calls was 0.68 and for puts it was 0.61. Summary statistics for MIV and for IOIV, as well as the
difference between the two, for both calls and put are provided in Table 1.

Focusing first on the results for the calls, the IOIV exceeded the MIV on 312 days and the MIV exceeded
the IOIV on 193 days. The mean IOIV exceeded the mean MIV by 1.21 vol points (13.16 versus 11.95). This
is 5.03% of the call IOIV. That is, the IOIV exceeded the MIV by 5.03% of the IOIV on average. Similar results
were found for puts, but the differences between the IOIV and MIV were less extreme. IOIV exceeded MIV
on 270 days andMIV exceeded IOIV on 235 days. Themean IOIV exceeded themeanMIV by 0.76 vol points
(12.80 versus 12.04). This is 1.40% of the put IOIV.

The results above are consistent with the often made claim by dispersion traders that index volatility
(measured here by IOIV) tends to be rich and component volatilities (measured here by MIV) tend to be
cheap. That is IOIVaverage>MIVaverage. This is equivalent to the proposition that DIFaverage>0 where
DIFaverage=IOIVaverage−MIVaverage.

To test this more formally, the distributional properties of the DIFt series, where DIFt=IOIVt−MIVt,
were examined more closely. The Kolmogorov–Smirnov (K–S) goodness-of-fit test revealed that the DIFt
series was best described as lognormal for both calls and puts.17 This finding is consistent with earlier
research.18 Additionally, a test for iid revealed significant first order serial correlation when the
differencing interval is one day. This too was true for both calls and for puts. For this reason, it was not
possible to appeal to the CLT to justify normality for DIFaverage.19 Consequently a bootstrapping approach
U

17 Because lognormal distributions cannot go below 0, but the difference between two lognormal distributions can go below zero,
a constant was added to all observations on the difference between IOIV and MIV to shift the values up sufficiently that they were all
positive before applying the K–S test for lognormality.
18 Mitchell (1968) and Mehta, Molisch, Wu, and Zhang (2006).
19 See Law and Kelton (2000) and Godwin and Zaremba (1961).
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based on 505 random draws, with replacement, from the actual DIFt series. 20 This was done for calls and
repeated for puts. The K–S test confirmed the normality of the DIFaverage for both calls and puts.

Based on the mean and the standard deviation of the bootstrapped DIFaverage, we can reject the null
hypothesis that DIFaverage=0 in favor of the alternative hypothesis that the DIFaverage>0 for both calls and
puts at an extraordinarily high level of significance (0.000001).

Based on these results, we can conclude that, at least with respect to the study period, the index option
implied volatility was, on average, rich and component implied volatilities were, on average, cheap.

In industry literature21 the difference between themeans of the two volatilitymeasures (1.21 vol points
for calls and 0.76 vol points for puts) is sometimes described as a “correlation risk premium.” The logic
behind this description is that the MIV measure of index volatility relies on the historical return cor-
relations. It is well known that during periods of market stress correlations tend to rise. Thus, one might
over-price index volatility (IOIV) as a way of compensating traders for the risk of a correlation spike.

4.2. Transaction costs

Two prices can differ without giving rise to an arbitrage opportunity if the difference in the prices is
insufficient to cover the transaction costs associated with executing the strategy intended to exploit that
difference. Transaction costs include three separately identifiable components: (1) the bid–ask spread,
(2) the commission (if it has to be paid), and (3) the market impact cost. If the methodology of the
UN20 In statistics, bootstrapping is the practice of estimating the properties of an estimator (such as a variance) by repeated sampling
from an approximating distribution. The most common choice for the approximating distribution is the observed empirical
distribution (in the present case the 505 observations on DIF). The procedure involves random sampling with replacement from the
original dataset the same number of times as the size of the original data set. The principal advantage of bootstrapping over other
analytical methods is its simplicity. The principal disadvantage of the method is that it is expensive in terms of computational effort
(a problem rendered largely moot by the advances in computer technology).
21 See the Mougeot (2007) article cited earlier.
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^

t1:1

Summary statistics.
t1:2
t1:3 Calls Puts

t1:4 IOIV MIV Difference IOIV MIV Difference

t1:5 Vol points % of IOIV Vol points % of IOIV

t1:6 Mean 13.16 11.95 1.21 5.03
^

12.80 12.04 0.76 1.40
^

t1:7 Median 11.60 11.53 0.69 6.25
^

11.24 11.66 0.28 2.57
^

t1:8 Standard deviation 4.10 2.11 3.09 3.91 2.03 3.13
t1:9 Standard error of the mean 0.1374 0.1391
t1:10 # of standard errors (Z score) 8.804 5.487
t1:11 Min absolute value 0.00 0.01
t1:12 Max absolute value 13.51 11.27
t1:13 # cases IOIV>MIV 312 270
t1:14 # cases MIV>IOIV 193 235
t1:15 Correlation between IOIV and MIV 0.68 0.61
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OOdispersion traders' approach necessitates periodic rebalancing of the portfolio, a rebalancing cost will also
be incurred. This rebalancing cost has elements of all three types of the aforesaid transaction costs.

The principal transaction cost associated with option-based dispersion trading is the bid–ask spread
that the trader must absorb when entering and subsequently exiting a position. Professional dispersion
traders, which include some hedge funds, generally negotiate preferential commission schedules which
can take a variety of forms. For example, the commission can take the form of a flat monthly fee,
irrespective of the volume of trading, in which case the commission fee can be viewed as a fixed cost.
Alternatively, the commission can be a function of the monthly volume such that the “per contract”
commission gets smaller as the monthly volume gets larger. The third component of transaction cost,
known in the academic world as “market impact cost,” but known among arbitrageurs as “slippage,” is the
impact on market prices brought about by attempts to trade “in size.” That is, if the dispersion trader
attempts to trademore contracts than are currently available at the bid or ask, the trader will transact some
of the contracts at prices outside the current bid and ask (i.e., below the current bid or above the current
ask). Because dispersion trading donewith options often takes an algorithmic approach, themarket impact
cost is likely negligible. Indeed, that is in large part the logic behind algorithmic trading. For these reasons,
the dominant component of the transaction cost incurred by dispersion traders, using options to express
their views, is the bid–ask spread.

In the world of options, the bid and ask prices can be stated in either monetary units or in volatility
points. That is, suppose that a stock is trading at $50, there are 30-day ATM calls on this stock that are bid at
$1.75 and asked at $1.85. The bid and ask are quoted in dollars, i.e., monetary units.22 Call the $0.10
difference between these two prices the “monetary bid–ask spread” or simply a “monetary spread.” From
the option prices, one can back out the bid–ask spread in terms of “volatility points.” For example,
assuming that the annual risk-free interest rate is 4% and the stock does not pay dividends, the implied bid
volatility is 29.20% and the implied ask volatility is 30.96%.23 That is, one can buy volatility at 30.96 vol
points and one can sell volatility at 29.20 vol points. The bid–ask spread in terms of volatility points is then
1.76 (i.e., 1.76

^
%). Call this the “volatility bid–ask spread” or simply the “volatility spread.”

Trying to estimate a reasonable volatility spread is complicated by a number of factors. First, for most of
the two years studied, the minimum permissible tick size, and therefore the minimum monetary spread,
was $0.05 for options trading below $3.00 and $0.10 for options trading above $3.00.24 Second, the liquidity
of options can vary tremendously. Options on heavily traded stocks tend to be more liquid than options on
less heavily traded stocks. More liquid options have tighter spreads. Further, options that are ATM tend to
U22 The bid and ask prices, and therefore the bid–ask spread, are quoted per share covered by the option.

^
Each option actually covers

100 shares.
^
It is standard practice in options trading to quote prices on a per share covered basis.

23 These were extracted using a Black/Scholes (B/S) Model.
24 On January 29, 2007 the options exchanges began a penny pilot program in which options on a few stocks were allowed to trade
in ticks of $0.01.

^
Thus allowing the bid–ask spread to shrink to $0.01.

^
However, this only affected a few stocks during the relevant

two-year period, and only during the latter part of the two-year period.
^
It also produced a reduction in the “size” that dealers would

quote.
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bemore liquid than both options that are in-the-money (ITM) and out-of-the-money (OTM). Third, a given
monetary spread can translate into very different volatility spreads.

The point of this is that it can beparticularly difficult to develop reasonable estimates of the bid–ask spread
in terms of implied volatilities, and thus difficult to know, absent

^
real-time data on bid and ask prices, how

large a volatility discrepancy is necessary in order to create a profitable dispersion trade.Nevertheless, one can
reason as follows: Over the relevant two-year period, the International Securities Exchange (the first
electronic optionsexchange and theonewhose technology is creditedwith a tighteningof spreads across all U.
S. options markets after it opened in 2000)25 reported that the average bid–ask spread for all options series
(which includes ATM,OTM, and ITMoptions on all names traded for all expirationdates)was just under $0.20.
Since the present study uses ATM options for themore liquid names, which tend to have the tightest spreads,
one can take this $0.20 as the upper bound for themonetary bid–ask spreadwith some room to spare to cover
the other types of transaction costs noted above.

Two different approaches were used to translate $0.20 monetary spread into a volatility spread. In the
first approach, $0.10 was added to and $0.10 was deducted from the Bloomberg quoted end-of-day option
values to obtain end-of-day ask and bid prices, respectively. From these ask and bid prices, the ask and the
bid implied volatilities were backed out. The difference was then the bid–ask volatility spread for the
option at a monetary spread of $0.20. This value averaged 3.56 vol points when all the options were
included for all 505 days. The second approach employed a worst-case scenario in which the implied
volatility spread was derived for a single option based on a composite stock assumed to be priced at the
lowest average daily stock price. This produced a highest possible, or “worst-case,” volatility spread of
4.09 vol points.26 In the interest of drawing more conservative conclusions, this worst-case volatility
spread of 4.09 vol points was employed.

4.3. Results in the presence of transaction costs

The 4.09 vol point transaction cost can be viewed as a “hurdle volatility discrepancy.” That is, the
dispersion trader must find a discrepancy between IOIV and MIV of at least this size before he/she can be
confident that a tradewill produce a profit after transaction costs. Because the trade can be done either way
(i.e., buy component volatilities and sell index volatility or sell component volatilities and buy index
volatility), the criterion for a trade is MIV<(IOIV−̂

^
4.09) or MIV>(IOIV+4.09); where both MIV and IOIV

are measured in volatility points.
In the case of call options, of the 505 days in the study, the total number of days (based on end-of-day

valuesonly) inwhichaprofitableopportunityoccurredwas84.Of these, 73were situations inwhich the index
options were rich and the equity options were cheap. That is MIV<(IOIV −̂̂4.09). And 11 were situations in
which the index options were cheap and the equity options were rich. That is, MIV>(IOIV+4.09).

In the case of put options, the total number of days in which a profitable opportunity presented itself
(based again on end-of-day volatilities) was 91. Of these, 71 are situations in which the index options were
rich and the equity options were cheap. That is MIV<(IOIV −̂̂4.09). And 20 were situations in which the
index options were cheap and the equity options were rich. That is, MIV>(IOIV+4.09).

Looking back at Figs. 2 and 3, it is clear that the levels of the volatility measures IOIV and MIV were
higher overall during the second year of the study period than during the first year of the study period. In
addition, the volatilities of IOIV and MIV were slightly higher during the second year than during first year.
That is to say, volatility levels changedmore dramatically over short periods of time during the second year
than during the first year.

One would expect more arbitrage-like27 dispersion trading opportunities to arise when implied
volatility is less stable than when it is more stable. A simple check on this proposition is to look at the
number of times the hurdle volatility discrepancy was exceeded during each of the two study-period years.
U25 See, for example, Simaan and Wu (2007).
26 For those interested in the conversion procedure to obtain the worst-case volatility spread from the monetary spread, see
Marshall (2008b).
27 “Arbitrage-like” refers to situations in which one buys the “cheap” and sells the “rich.”

^
However, as noted earlier, unless the risk

can be completely removed, which is rarely the case, the trade is not a “true arbitrage” in the academic sense of the term “arbitrage
^
.”

The term “arbitrage-like” is often used to describe trades that bear a surface similarity to arbitrage, but which are not completely
free of risk.
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Focusing on the call options, at a hurdle volatility discrepancy of 4.09 vol points, a total of 13 trading
opportunities occurred during the first year while 71 trading opportunities occurred during the second
year. The results were similar for puts: there were 26 trading opportunities in the first year and 65 in the
second year.

4.4. Cluster analysis

These results suggested that a more thorough month-by-month cluster analysis would likely be
beneficial in an effort to judge the

^
effect of volatility levels and the

^
effect of volatility on the appearance of

alpha opportunities. Because Pearson's product moment correlation assumes normality and is a measure of
linear correlation only, Spearman's rank order correlation was used instead. This measure of correlation is
distribution free and does not assume that the underlying relationship between the variables is linear.

Two tests were conducted. In the first, the null hypothesis was that there is no correlation between the
frequency of alpha opportunities and the level of IOIV against the alternative hypothesis that the two
variables are correlated. In the second, the null hypothesis was that there is no correlation between the
frequency of alpha opportunities and the volatility of IOIV against the alternative hypothesis that the two
variables are correlated. This was done separately for the calls and the puts. Thus, there were four cluster
tests performed.

The test procedure was straight forward. For each of the 24 months of the study period, the number of
alpha opportunities

^
was counted for the month after allowing for transactions costs. For each of the

24 months the average IOIV for the month was also calculated. Finally, for each of the 24 months the
volatility of the IOIV for themonthwas calculated. Themonthswere then ranked from highest to lowest for
each of the three variables. Spearman's rho for the four correlation tests are reported in Table 2.28 Pearson's
product moment correlation appears in parentheses for comparison, but is not used in judging statistical
significance.

For a sample size of 24 (i.e., 24 months in this case), the critical Spearman value for a test of the null
hypothesis at a 10% level of significance is 0.344, at a 5% level of significance it is 0.407, and at a 1% level of
significance it is 0.521.29 These levels of significance are indicated in Table 2 by *, **, and ***, respectively.

It is clear from this cluster analysis that both the level of IOIV and the volatility of IOIV positively
influence the number of alpha opportunities. The relationship between alpha opportunities and IOIV level
is clearly much stronger than the relationship between alpha opportunities and IOIV volatility.

5. Conclusions

Not surprisingly, the number of profitable dispersion trading opportunities declines as the transaction
cost rises. However, even when employing a worst-case-scenario transaction cost of 4.09 vol points,
dispersion trading opportunities repeatedly appeared. Further, because this study only looked at
volatilities at one moment in the day (i.e., the end-of-day), it is virtually certain that many other
opportunities occurred at other times of the day. Importantly, the results for both the calls and the puts are
consistent with the claim by Nelken and others, that the implied volatilities of index options are generally
higher than the Markowitz-implied volatilities derivable from the volatilities of the components.

Because these results are not consistent with the Efficient Markets Hypothesis, one is inclined to ask
what the reasons for the apparent mispricing of volatilities might be. Several possible explanations
immediately come to mind. First, it is possible that transaction costs have been underestimated. For
example, no attempt was made to estimate or to explicitly include rebalancing costs.30 This argument,
UN28 Spearman's rho (ρs) is calculated by first defining a variable dt=R1,t−̂^

R2,t where R1,t is the rank of the t
^
th observation on

variable 1 and R2,t is the rank of the t
^
th observation on variable 2.

^
Then ρs is given by: ρs = 1− ð6∑d2t Þ

n × ðn2−1Þ.
29 Note that in the Spearman rank order correlation test, the degrees of freedom are two less than the sample size (that is df=n−̂̂2).

^
These critical values are taken from Ramsey (1989).
30 Without tick-by-tick market data (i.e., extremely high frequency data) observed in the context of a live trading operation, it is
not possible to ascertain how large such costs would be.

^
These costs and complexities are the key reason why many volatility traders

would, in practice, employ volatility or variance swaps to express their volatility views, even though their analysis was based on
option data.
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Spearman rank order correlation for alpha opportunities.
t2:2
t2:3 Calls Puts

t2:4 Spearman Pearson Spearman Pearson

t2:5 Level of IOIV 0.659⁎⁎⁎ Q10.916 0.557⁎⁎⁎ 0.893
t2:6 Vol of IOIV 0.353⁎ 0.554 0.365⁎ 0.201

Transaction cost: 4.09 vol points.t2:7
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however, is weakened by the fact that a worst-case transaction cost scenario was employed. Second, the
calculation of the MIV relies upon historical return correlations and projects those correlations forward. It
is quite possible that the index option market is, on average, assuming higher return correlations going
forward than have been experienced in the recent past. Alternatively, consistent with the discussion earlier
in this paper, the index option market might be pricing in a “correlation risk premium.” This latter
argument would be consistent with the findings of many earlier studies that implied index volatility (a

^
forward-looking measure) tends to exceed realized index volatility (a

^
backward-looking measure).

Another possible explanation for ongoing dispersion trading opportunities is the sheer complexity of
the execution. Unlike simple forms of arbitrage in which one trades a single asset in one market against a
single asset in another market, dispersion trading of the type described in this study is extraordinarily
complex. It requires access to real-time data for thousands of options, an ability to crunch the numbers very
quickly, and an ability to engage in rapid-fire execution of the buy and sell orders for the various
components. Any delays in processing the numbers or in executing the orders will introduce risk because
the implied volatilities are continuously changing. To be persuaded to bear these risks, traders would be
expected to demand a greater volatility discrepancy than simply one large enough to cover transaction
costs. Additionally, because algorithmic trading is still a relatively new field, and even less so when applied
to dispersion trading, it is likely that an insufficient number of traders have sought to exploit themispricing
opportunities to completely eliminate them.

Finally, the evidence offered by the cluster analysis indicates, as one would expect, that the higher the
level of volatility and the more unstable volatility is (i.e., the more volatile the volatility) the more
frequently inefficiencies in the pricing of volatility arise.
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